Журналы →  Obogashchenie Rud →  2025 →  №4 →  Назад

COMPLEX RAW MATERIAL UTILIZATION
Название Optimizing hydrolytic purification of zinc electrolyte from selenium, tellurium, and arsenic impurities
DOI 10.17580/or.2025.04.06
Автор Utanov F. D., Atakulova N. A., Qutlymurotova N. Kh., Akhmadova D. A.
Информация об авторе

Almalyk Mining and Metallurgical Complex, JSK (Almalyk, Republic of Uzbekistan)
Utanov F. D., Engineer

 

Almalyk Branch of Islam Karimov Tashkent State Technical University (Almalyk, Republic of Uzbekistan)
Atakulova N. A., Associate Professor (acting), PhD in Chemical Engineering, nargizajumanova9@gmail.com

 

National University of Uzbekistan named after Mirzo Ulugbek (Tashkent, Republic of Uzbekistan)
Qutlymurotova N. Kh., Professor, Doctor of Chemical Sciences, Professor, nigora.qutlimurotova@mail.ru
Akhmadova D. A., Postgraduate Student, dilsoraaxmadova@gmail.com

Реферат

This study addresses the improvement of hydrolytic purification processes for zinc electrolyte solutions obtained from zinc cinder leaching, with the goal of enhancing electrolyte quality for efficient electrolysis. A comprehensive mineralogical analysis of process residues was conducted using an Olympus BX51 microscope, a SIMAGIS XS3CU digital camera, and Mineral C7 software. The presence of selenium, tellurium, and arsenic in the electrolyte negatively impacts zinc cathode quality and energy efficiency, making their removal critical. A novel purification method was developed and experimentally validated, involving the addition of 1.0 L of an iron solution (0.5–1.0 g/L Fe) to 80 m3 of zinc electrolyte. This approach significantly reduced the concentration of harmful impurities. Characterization of precipitates formed during purification revealed that iron hydroxide facilitates the coagulation of silicic acid, thereby enhancing impurity removal. The improved purification method led to a measurable reduction in impurity levels, increased zinc yield, and decreased energy consumption during electrolysis. These findings demonstrate the effectiveness of the proposed hydrolytic purification approach and its contribution to the economic and operational performance of zinc production.

Ключевые слова Hydrolytic purification, zinc electrolyte, selenium, tellurium, arsenic, iron, electrolysis, mineralogical analysis
Библиографический список

1. Yang Ch., Sun B. Modeling, optimization, and control of zinc hydrometallurgical purification process. Academic Press, Elsevier Inc., 2021. 230 p.
2. Zeng P., Wang Ch., Li M., Wei Ch. Volatilization behavior of lead, zinc and sulfur from flotation products of low-grade Pb-Zn oxide ore by carbothermic reduction. Powder Technology. 2023. Vol. 433. DOI: 10.1016/j.powtec.2023.119185
3. Kolesnikov A. V., Fominykh I. M. Parameters of electrolysis of zinc sulfate solutions. Butlerovskie Soobshcheniya. 2017. Vol. 51, No. 8. p. 89.
4. Liu Q., Zhao Y., Zhao G. Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy. 2011. Vol. 110, Iss. 1–4. pp. 79–84.
5. Zhunusova G. Zh., Altaybaev B. T., Kalyanova O. A. Obtaining zinc oxide from a sulfuric acid solution of autoclave leaching of zinc-containing waste. Fundamentalnye i Prikladnye Issledovaniya: Problemy i Rezultaty. 2014. No. 15. pp. 120–124.
6. Kazanbaev L. A., Kozlov P. A., Kubasov V. L., Kolesnikov A. V. Zinc hydrometallurgy. Purification of solutions and electrolysis. Moscow: «Ore and Metals» Publishing House, 2006. 176 p.
7. Xu Y., Xia H., Zhang Q., et al. Green and efficient recovery of valuable metals from by-products of zinc hydrometallurgy and reducing toxicity. Journal of Cleaner Production. 2022. Vol. 380, Iss. 3. DOI: 10.1016/j.jclepro.2022.134993
8. Kyle J. H., Breuer P. L., Bunney K. G., Pleysier R. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part II. Deportment in gold ore processing by cyanidation. Hydrometallurgy. 2012. Vol. 111–112. pp. 10–21.
9. Abkhoshk E., Jorjani E., Al-Harahsheh M. S., et al. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy. 2014. Vol. 149. pp. 153–167.
10. Lampinen M., Laari A., Turunen I. Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration. Hydrometallurgy. 2015. Vol. 153. pp. 160–169.
11. Bondareva O. S., Dobychina O. S. Analyzing possible use of cathode zinc in zinc pots. Tsvetnye Metally. 2024. No. 1. pp. 84–90.
12. Omarova N. K., Sherembaeva R. T., Katkeeva G. L., Mukhtar A. A. Improving zinc flotation performance when processing lead-zinc ores. Obogashchenie Rud. 2024. No. 1. pp. 63–69.
13. Yang T., Rao S., Zhang D., et al. Leaching of low grade zinc oxide ores in nitrilotriacetic acid solutions. Hydrometallurgy. 2016. Vol. 161. pp. 107–111.
14. Zhang F., Wei C., Deng Z., et al. Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant. Hydrometallurgy. 2016. Vol. 161. pp. 102–106.
15. Ashtari P., Pourghahramani P. Selective mechanochemical alkaline leaching of zinc from zinc plant residue. Hydrometallurgy. 2015. Vol. 156. pp. 165–172.
16. Golik V. I., Klyuev R. V., Martyushev N. V., et al. Tailings utilization and zinc extraction based on mechanochemical activation. Materials. 2023. Vol. 16, Iss. 2. DOI: 10.3390/ma16020726
17. Golik V. I., Kondratiev Yu. I., Khulelidze K. K., et al. Leaching of lead and zinc from mechanically activated tailings of beneficiation of polymetallic ores. Ustoychivoye Razvitie Gornykh Territoriy. 2011. No. 51. pp. 51–56.
18. Turysbekov D. K., Semushkina L. V., Narbekova S. M., Mukhanova A. A. Studies on the use of iron-containing reagents in the separation of bulk copper-lead concentrates. Obogashchenie Rud. 2019. No. 4. pp. 13–19.
19. Khalezov B. D., Vatolin N. A., Makurin Yu. N., Bykov N. A. Extraction of zinc from copper-zinc ore leaching solutions. Gornyi Informatsionno-analiticheskiy Byulleten'. 2005. No. 3. pp. 260–265.

Language of full-text русский
Полный текст статьи Получить
Назад