Journals →  Obogashchenie Rud →  2025 →  #4 →  Back

SECONDARY RAW MATERIAL PROCESSING
ArticleName Separation smelting of magnetic concentrate in complex processing of steel slag
DOI 10.17580/or.2025.04.08
ArticleAuthor Bodyakov A. N., Markova I. Yu., Strokova V. V., Bondarenko D. O.
ArticleAuthorData

Belgorod State Technological University named after V. G. Shukhov (Belgorod, Russia)

Bodyakov A. N., Head of Laboratory, PhD in Engineering Sciences, savaa72@mail.ru
Markova I. Yu., Associate Professor, PhD in Engineering Sciences, Docent, irishka-31.90@mail.ru
Strokova V. V., Director of the Innovative Scientific, Educational and Experimental-Industrial Center «Nanostructured Composite Materials», Doctor of Engineering Sciences, Professor, vvstrokova@gmail.com
Bondarenko D. O., Senior Researcher, PhD in Engineering Sciences, Docent, di_bondarenko@mail.ru

Abstract

The recycling and reuse of large-tonnage industrial by-products are of growing importance due to their considerable resource potential. For metallurgical slags, selecting an optimal stabilization technology is crucial for improving economic efficiency by enabling recovery of metallized fractions for reuse and minimizing slag disposal. This study evaluates the effects of different stabilizers on the composition and yield of metal recovered during crystal-chemical slag stabilization. Results indicate that electric arc furnace (EAF) dust is the most effective stabilizer. Specifically, EAF dust — a waste product from JSC Oskol Electrometallurgical Plant named after A. A. Ugarov (OEMP), alongside steelmaking slag — facilitates in-process slag stabilization within the production cycle. Compared to ferroboron, EAF dust enhances recovery of metallized material from slag for reuse in steelmaking, thereby reducing ore consumption. Using EAF dust as a stabilizing agent in crystal-chemical stabilization can yield up to 47 % metal suitable for reuse, characterized as low-carbon steel with moderate impurity levels.

The study was carried out under the grant issued by the Russian Science Foundation No. 23-19-00796 (https://rscf.ru/project/23-19-00796/) using the equipment of the Center for High Technologies based on of the Belgorod State Technological University named after V. G. Shukhov.

keywords Metallurgical slags, reuse, slag stabilization, electric arc furnace dust, metallurgical value, separation of metallurgical slags, separation smelting
References

1. Temnikov V. V., Kalimulina E. G., Tleugabulov B. S. Analysis of formation and processing of metallurgical wastes at «EVRAZ NTMK» JSC. Chernye Metally. 2018. No. 7. pp. 32–37.
2. Sviridova T. V., Bobrova O. B. Environmental aspect of the processing of slags of metallurgical production. Khimiya. Ekologiya. Urbanistika. 2019. Vol. 1. pp. 203–207.
3. Leont′ev L. I., Ponomarev V. I., Sheshukov O. Yu. Recycling and disposal of industrial waste from metallurgical
production. Ekologiya i Promyshlennost' Rossii. 2016. Vol. 20, No. 3. pp. 24–27.
4. Piatak N. M. Environmental characteristics and utilization potential of metallurgical slag. Environmental geochemistry. Elsevier, 2018. pp. 487–519.
5. Tokach Yu. E., Rubanov Yu. K. Obtaining secondary metals from metallurgical waste. Modern metallurgy at the beginning of the new millennium. Proc. of the International scientific and practical conference, Lipetsk, November 17–21, 2014. Pt. 3. pp. 51–57.
6. Rudskoi I., Kokorin V. N. Compaction of heterophase mechanical mixtures in production processes of utilizing industrial wastes (final tailings) at enterprises of ferrous metallurgy. Russian Journal of Non-Ferrous Metals. 2013. Vol. 54. pp. 518–521.
7. Peng Zh., Gregurek D., Wenzl Ch., White J. F. Slag metallurgy and metallurgical waste recycling. JOM. 2016. Vol. 68. pp. 2313–2315.

8. Lim J. W., Chew L. H., Choong T. S. Y., et al. Utilizing steel slag in environmental application — An overview. IOP Conference Series: Earth and Environmental Science. 2016. Vol. 36, Iss. 1. DOI: 10.1088/1755-1315/36/1/012067
9. Das B., Prakash S., Reddy P. S. R., Misra V. N. An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling. 2007. Vol. 50, Iss. 1. pp. 40–57.
10. Birat J. P. Recycling and by-products in the steel industry. Revue de Métallurgie. 2003. Vol. 100, Iss. 4. pp. 339–348.
11. Yi H., Xu G., Cheng H., Wang J., Wan Y., Chen H. An overview of utilization of steel slag. Procedia Environmental Sciences. 2012. Vol. 16. pp. 791–801.
12. Kashibadze N. V., Zagorodnyuk L. Kh., Strekozova M. A. Development and optimization of properties of dry building mixes for self-leveling floors using slags. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V. G. Shukhova. 2009. No. 3. pp. 89–94.
13. Leontiev L. I., Sheshukov O. Yu., Mikheenkov M. A., et al. Technological features of processing chipboard and ACP slags into building materials and the experience of refining slag utilization at JSC STZ. Stal′. 2014. No. 6. pp. 106–109.
14. Shakurov A. G., Zhuravlev V. V., Parshin V. M., et al. Complex processing of liquid steelmaking slags with reduction of iron and production of high-quality marketable products. Stal′. 2014. No. 2. pp. 75–81.
15. Ivanitsa S. I., Aksel′rod L. M., Kushnerev I. V., et al. Stabilization of out-of-furnace steel processing slags in NLMK-Kaluga LLC. Stal′. 2018. No. 1. pp. 20–23.
16. Primavera A., Pontoni L., Mombelli D., et al. EAF slag treatment for inert materials′ production. Journal of Sustainable Metallurgy. 2016. Vol. 2. pp. 3–12.
17. Li C. C., Lin C. M., Chang Y. E., et al. Stabilization and crystal characterization of electric arc furnace oxidizing slag modified with ladle furnace slag and alumina. Metals. 2020. Vol. 10, Iss. 4. DOI: 10.3390/met10040501.
18. Afolabi W. N. Mineral phase crystallization sequence of Delta Steel Company (DSC), Ovwian-Aladja, Western Niger Delta, steelmaking slag for use as material in industry. International Journal of Materials Science and Applications. 2017. Vol. 6, Iss. 2. DOI: 10.11648/j.ijmsa.20170602.16
19. Bodyakov A. N., Markova I. Yu., Strokova V. V., Stepanenko M. A. Influence of stabilizers on the composition and structure of metallurgical slag. Chernye Metally. 2023. No. 12. pp. 40–48.
20. Bodyakov A. N., Markova I. Yu., Strokova V. V., et al. Analysis of standardized properties of slag crushed stone resulting from crystal-chemical stabilization. Stroitelnye Materialy. 2023. No. 12. pp. 20–25.
21. Bodyakov A. N., Markova I. Yu., Logvinenko A. A., et al. Properties of metallurgical slag stabilized in industrial conditions. Regionalnaya Arkhitektura i Stroitelstvo. 2023. No. 2. pp. 44–51.
22. Strokova V. V., Markova I. Yu., Logvinenko A. A., et al. Crystal-chemical stabilization of metallurgical slag. Russian Engineering Research. 2024. Vol. 44, No. 10. pp. 1491–1494.
23. Bratkovskiy E. V., Turusheva A. I. Evaluation of metallurgical properties of scrap briquettes of South Ural Mining and Processing Company LLC. Tekhnologii Metallurgii, Mashinostroyeniya i Materialoobrabotki. 2020. No. 19. pp. 35–44.
24. Tikhonova I. O., Potapova E. N., Volosatova A. A., Guseva T. V. The use of metallurgical slag in the production of building materials as a direction for the formation of a circular economy. Chernye Metally. 2023. No. 8. pp. 69–73.
25. Serzhanova N. Kh., Kuldeev E. I., Bondarenko I. V., Erzhanova Zh. A. Processing of stale slurry tailings from chrome ore processing plants to obtain standard chrome concentrate. Obogashchenie Rud. 2024. No. 1. pp. 44–49.

Language of full-text russian
Full content Buy
Back