Journals →  Chernye Metally →  2025 →  #10 →  Back

140th anniversary of Helical Rolling
ArticleName Experience in applying radial-shear rolling to improve the structure and properties of ferrous and non-ferrous metals and alloys
DOI 10.17580/chm.2025.10.05
ArticleAuthor A. S. Arbuz, A. B. Naizabekov, F. E. Popov, N. A. Lutchenko, E. A. Panin, S. N. Lezhnev
ArticleAuthorData

Nazarbayev University, Astana, Kazakhstan

A. S. Arbuz, Cand. Eng., Leading Researcher, Center of Collective Use and NRS, e-mail: alexandr.arbuz@nu.edu.kz

F. E. Popov, Master’s Degree, Researcher, Center of Collective Use and NRS, e-mail: fedor.popov@nu.edu.kz
N. A. Lutchenko, Master’s Degree, Researcher, Center of Collective Use and NRS, e-mail: nikita.lutchenko@nu.edu.kz

 

Rudny Industrial University, Rudny, Kazakhstan
A. B. Naizabekov, Dr. Eng., Prof., Mining and Metallurgy Faculty, e-mail: naizabekov57@mail.ru
S. N. Lezhnev, Cand. Eng., Prof., Mining and Metallurgy Faculty, e-mail: sergey_legnev@mail.ru

 

Karaganda Industrial University, Temirtau, Kazakhstan

E. A. Panin, Cand. Eng., Associate Prof., Prof., Dept. of Metal Forming, e-mail: cooper802@mail.ru

Abstract

Abstract: Radial-shear rolling (RSR) technology is the most promising and effective way to produce various high-quality long-length metal products from ferrous and non-ferrous metals and alloys, including those with a gradient ultrafine-grained structure. RSR scheme has one main difference from the well-known cross–screw rolling scheme - an increased feed angle α = 18°-20°. In this case, the rolling angle β remains in the range from 5 to 7°. Based on this scheme (i.e., the RSR scheme), a number of radial-shear rolling mills were developed and put into small-scale production. In this paper, we review our team’s experience in using the radial-shear rolling method to improve the structure and properties of various ferrous and non-ferrous metals and alloys. The review of scientific publications of our team in this area given in this article indicates the prospects of using RSR technology to produce high-quality metal products with a given level of properties.
This study was supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP26100119).

keywords Severe plastic deformation, radial-shear rolling, ferrous and non-ferrous metals, microstructure, properties, computer modeling, defects
References

1. Valiev R. Z., Islamgaliev R. K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science. 2000. Vol. 45. No. 2. рр. 103-189.
2. Yin Y., Jia W., Li S., Mao C., Ying Y., Mao X., Zhao Y. Mechanical Behavior of Nanostructured Metallic Materials Prepared by Severe Plastic Deformation. Materials China. 2019. Vol. 38. Iss.10. pp. 1030-1036.
3. Qi Y., Kosinova A., Kilmametov A. R., Straumal B. B., Rabkin E. Stabilization of ultrafine-grained microstructure in high-purity copper by gas-filled pores produced by severe plastic deformation. Scripta Materialia. 2020. Vol. 178 pp. 29-33.
4. Edalati K., Hidalgo-Jiménez J., Nguyen T. T., Sena H., Enikeev N., Rogl G., Levitas V. I., Horita Z., Zehetbauer M. J., Valiev R. Z., Langdon T. G. Severe plastic deformation of ceramics by highpressure torsion: review of principles and applications. Annu. Rev. Mater. Res. 2025. Vol. 55. pp. 89-124.
5. Beloshenko V. A., Beygelzimer Ya. E., Voznyak Yu. V., Chishko V. V. Modification of polymeric materials by severe plastic deformation. Obrabotka materialov davleniem. 2019. No. 1 (48). pp. 94–103.
6. Beloshenko V. A., Voznyak Yu. V. Solid-phase extrusion of polymers using simple shear deformation. Fizika i tekhnika vysokikh davleniy. 2014. Vol. 24, No. 2. pp. 95–105.
7. Zhilyaev A. P., Langdon T. G. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science. 2008, Vol. 53. pp. 893–979.
8. Valiev R. Z., Langdon T. G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. 2006. Vol. 51. pp. 881–981.
9. Bridgman P. W. Effects of high shearing stress combined with high hydrostatic pressure. Physical Review. 1935. Vol. 48. pp. 825–847.
10. Raab G. I. Development of methods of severe plastic deformation for obtaining long-length nanostructured titanium semi-finished products. Fizika i tekhnika vysokikh davleniy. 2007. Vol. 17, No. 3. pp. 113–120.
11. Segal V. M., Shchukin V. Ya. Device for strengthening material under pressure. USSR Author’s Certificate No. 492780. Applied: 11.06.1973. Published: 25.11.1975.
12. Raab G. I., Valiev R. Z., Lowe T. C., Zhu Y. T. Continuous processing of ultrafine grained Al by ECAP-Conform. Materials Science and Engineering A. 2004. Vol. 382. pp. 30–34.
13. Galkin S. P. Radial shear rolling as an optimal technology for lean production. Steel in Translation. 2014. Vol. 44. No. 1. рр. 61-64.
14. Alhaj Ali Mahmoud A., GaminYu. V., Khakimova A. N., Kin T. Yu., Galkin S. P. Influence of temperature of radial-shear rolling on the structure of VT3-1 alloy. Metallurgist. 2025. Vol. 69. Iss. 1–2. pp. 121–131.
15. GaminYu. V. Galkin S. P. Koshmin A. N., Alhaj Ali Mahmoud A., Nguyen X. D. High-reduction radial shear rolling of aluminum alloy bars using custom-calibrated rolls. International Journal of Material Forming. 2024. Vol. 17. pp. 63–74.
16. Jianlin Liu, Linchao Zhao, Li Zhipeng, Jie Xijie, Renhui Zheng. Deformation and microstructure radial gradient evolution of AZ31 magnesium alloy bar during three-roll skew rolling. Journal of Alloys and Compounds. 2024. Vol. 1026. 173631.
17. Pishchikov V., Kuzmin S., Chigrinskiy V., Marukov A., Naizabekov A. Research of combined copper processing technology including heat treatment and radial-shear rolling. Eurasia Proceedings of Science, Technology, Engineering and Mathematics. 2024. Vol. 26. pp. 117–123.
18. Ce Ji, Hui Niu, Zixuan Li, Tao Wang, Qingxue Huang. Deformation law and bonding mechanism of 45 carbon steel/316L stainless steel cladding tubes fabricated by three-roll skew rolling bonding process. Journal of Materials Processing Technology. 2024. Vol. 328. 118277.
19. Potapov I. N. Research and improvement of technology and design of mills for cross-helical rolling of pipes: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Moscow: MISiS, 1970. 56 p.
20. Potapov I. N., Polukhin P. I., Kharitonov E. A., Galkin S. P. Radial-shear rolling of section metal. Collection of papers: Theory and technology of metal- and energy-saving processes of metal forming. Moscow : Metallurgiya, 1986. pp. 72–78.
21. Tselikov A. I. Rolling theory. Moscow : Metallurgiya, 1967. 460 p.
22. Fomichev I. A. Skew rolling. Moscow : Metallurgizdat, 1963. 262 p.
23. Tselikov A. I., Lugovskoy V. M., Tretyakov E. M. Elements of the theory of transverse rolling and cold rolling on a three-high mill. Vestnik mashinostroeniya. 1961. No. 7. pp. 3–12.
24. Potapov I. N., Polukhin P. I. New technology of screw rolling. Moscow : Metallurgiya, 1975. 344 p.
25. Potapov I. N., Polukhin P. I. Screw rolling technology. 2nd edition, supplemented and revised. Moscow : Metallurgiya, 1990. 344 p.
26. Polukhin P. I., Potapov I. N., Kharitonov E. A., Galkin S. P., Puchkov L. M., Khasin G. A., Yurov V. A. Method of screw rolling of rods from low-plasticity steels and alloys. USSR Author’s Certificate No. SU786120. Applied: 04.07.1979. Published: 23.08.2023. Bulletin No. 24.
27. Galkin S. P. Theory and technology of stationary screw rolling of billets and rods of low-plasticity steels and alloys: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Moscow : MISiS, 1998. 41 p.
28. Galkin S. P. Screw rolling method. Patent RF, No. 2293619. Applied: 04.04.2006. Published: 20.02.2007.
29. Goncharuk A. V., Romantsev B. A., Mikhailov V. K., Galkin S. P., Daeva E. V., Chistova A. P., Khzardzhyan A. A. Screw rolling method and apparatus for performing the same. Patent RF, No. 2179900. Applied: 28.04.2001. Published: 27.02.2002.
30. Naizabekov A., Lezhnev S., Maksimkin O., Tsai K., Panin E., Arbuz A. Microstructure and mechanical properties of austenitic stainless steel AISI-321 after radial shear rolling. Journal of Chemical Technology and Metallurgy. 2018. Vol. 53, Iss. 3. pp. 606–611.
31. Tsay K., Arbuz A., Gusseynov N., Nemkaeva R., Ospanov N., Krupenkin I. Refinement of the microstructure of steel by cross rolling. Journal of Chemical Technology and Metallurgy. 2016. Vol. 51, Iss. 4. pp. 385–392.
32. Naizabekov A. B., Lezhnev S. N., Arbuz A. S., Panin E. A., Koinov T. A. Simulation of radial-shear rolling of austenitic stainless steel AISI-321. Journal of Chemical Technology and Metallurgy. 2019. Vol. 54, Iss. 5. pp. 1086–1094.
33. Lezhnev S. N., Naizabekov A. B., Panin E. A., Volokitina I. E., Arbuz A. S. Graded microstructure preparation in austenitic stainless steel during radial-shear rolling. Metallurgist. 2021. Vol. 64, Nos. 11–12. pp. 1150–1158.
34. Naizabekov A., Panin E., Lezhnev S., Arbuz A., Tolkushkin A., Knapinski M., Esbolat A. Computer simulation of preliminary heat treatment and radial-shear rolling of copper. Journal of Chemical Technology and Metallurgy. 2023. Vol. 58, Iss. 6. pp. 1163–1170.
35. Naizabekov A., Lezhnev S., Panin E., Arbuz A., Tolkushkin A., Tsyba P., Rubanik V., Tsarenko Y. Computer simulation of preliminary heat treatment and radial-shear rolling of brass. Journal of Chemical Technology and Metallurgy. 2024. Vol. 59, Iss. 3. pp. 661–671.
36. Arbuz A., Kawalek A., Ozhmegov K., Dyja H., Panin E., Lepsibayev A., Sultanbekov S., Shamenova R. Using of radial-shear rolling to improve the structure and radiation resistance of zirconium-based alloys. Materials. 2020. Vol. 3. 4306.
37. Ozhmegov K., Kawalek A., Naizabekov A., Panin E., Lutchenko N., Sultanbekov S., Magzhanov M., Arbuz A. The effect of radial-shear rolling deformation processing on the structure and properties of Zr-2.5Nb alloy. Materials. 2023. Vol. 16. 3873.
38. Arbuz A., Kawalek A., Ozhmegov K., Panin E., Magzhanov M., Lutchenko N., Yurchenko V. Obtaining an equiaxed ultrafine-grained state of the longlength bulk zirconium alloy bars by extralarge shear deformations with a vortex metal flow. Materials. 2023. Vol. 16. 1062.
39. Arbuz A., Kawalek A., Panichkin A., Ozhmegov K., Popov F., Lutchenko N. Using the radial shear rolling method for fast and deep processing technology of a steel ingot cast structure. Materials. 2023. Vol. 16. 7547.
40. Arbuz A., Panichkin A., Popov F., Kawalek A., Ozhmegov K., Lutchenko N. Modeling the evolution of casting defect closure in ingots through radial shear rolling processing. Metals. 2024. Vol. 14. 53.
41. Arbuz A., Popov F., Panichkin A., Kawalek A., Lutchenko N., Ozhmegov K. Using the radial-shear rolling method for casted zirconium alloy ingot structure improvement. Materials. 2024. Vol. 17. 5078.
42. Lezhnev S., Naizabekov A., Tolkushkin A., Panin E., Kuis D., Arbuz A., Tsyba P., Shyraeva E. Choosing the design of a radial-shear rolling mill for obtaining a screw profile. Modelling. 2024. Vol. 5. pp. 1101–1115.

Language of full-text russian
Full content Buy
Back