| Название |
Ultrasonic bioleaching
of Ni, Cu, and Co from sulfide ores: process
intensification and efficiency optimization |
| Реферат |
Bacterial-chemical leaching (BCL) is a proven biotechnological method for extracting non-ferrous and rare metals from sulfide ores, utilizing acidophilic chemolithotrophic microorganisms such as Acidithiobacillus ferrooxidans. However, its efficiency is often limited by the formation of passivating oxidation films that restrict microbial access to mineral surfaces. This study investigates the impact of ultrasonic pretreatment of ore slurry, followed by screening, on the efficiency of BCL for the extraction of nickel, copper, and cobalt from low-grade sulfide ores. Ultrasonic treatment disrupts oxidation films, generates microcracks, and increases specific surface area, thereby enhancing bacterial colonization and accelerating leaching kinetics. Liquid-phase separation further facilitates downstream solid-phase processing by concentrating valuable components and reducing contamination. Experiments were conducted on sulfide ore from the Shanuch deposit (Kamchatka), containing pyrrhotite, pentlandite, chalcopyrite, and violarite. Comparative tests—one with ultrasonic pretreatment and one control—demonstrated significantly improved outcomes in the treated sample. The bioreactor with pretreated ore showed accelerated bacterial growth (up to 287 × 109 cells/ml), reduced pH (2.13–2.17), elevated redox potential (up to 290 mV), and intensified iron redox activity. Metal concentrations in the leachate reached: Ni – 4478 mg/L, Cu – 253 mg/L, and Co – 132 mg/L, all substantially exceeding the control values. The results confirm that ultrasonic pretreatment significantly enhances the performance of bacterial-chemical leaching, offering a viable method for intensifying metal recovery from refractory sulfide ores. |
| Библиографический список |
1. Karavaiko G. I. Microorganisms and their role in biogeotechnology of metals. Biogeotechnology of metals. Moscow: Center for International Projects of the State Committee on Science and Technology, 1989. pp. 11–50. 2. Johnson D. B., Hallberg K. B. Acid mine drainage remediation options: A review. Science of the Total Environment. 2019. Vol. 710. pp. 136–479. 3. Dong Y. B., Yue L., Lin H., Liu C. J. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 4. pp. 849–858.
4. Kondratieva T. F., Bulaev A. G., Muravyov M. I. Microorganisms in biotechnologies of sulfide ore processing. Moscow: Nauka, 2015. pp. 1546–1557. 5. Brar K. K., Magdouli S., Etteieb S., et al. Integrated bioleaching-electrometallurgy for copper recovery – A critical review. Journal of Cleaner Production. 2021. Vol. 291. DOI: 10.1016/j.jclepro.2020.125257 6. Blayda I. A., Vasyleva T. V., Semenov K. I. Impact of ultrasound on coal desulfurization and process of bioleaching of metals. Mikrobiologiya i Biotekhnologiya. 2017. No. 4. pp. 6–20. 7. Glembotski V. A., Sokolov M. A., Yakubovich I. A., et al. Ultrasound in mineral processing. Alma-Ata: Nauka, 1972. 229 p. 8. Groo E. A., Algebraistova N. K., Zhizhaev A. M., Romanchenko A. S., Makshanin A. V. A study of the effect of ultrasonic treatment to intensify gold extraction processes from refractory raw materials. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2012. No. 2. pp. 89–96. 9. Swamy K. M., Sukla L. B., Narayana K. L., Kar R. N., Panchanadikar V. V. Use of ultrasound in microbial leaching of nickel from laterites. Ultrasonics Sonochemistry. 1995. Vol. 2. pp. 5–9. 10. Ocheretyana S. O. Brief review of the effect of ultrasound on the inactivation of microorganisms involved in the bioleaching of metals (the effect of ultrasound on biofilm removal). Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. S19. pp. 230–236. 11. Bao S., Chen B., Zhang Y., Ren L., Xin C., Ding W., Yang S., Zhang W. A comprehensive review on the ultrasoundenhanced leaching recovery of valuable metals: Applications, mechanisms and prospects. Ultrasonics Sonochemistry. 2023. Vol. 98. DOI: 10.1016/j.ultsonch.2023.106525 12. Agranat B. A., Dubrovin M. N., Khavskiy N. N., et al. Fundamentals of physics and ultrasound technology. Moscow: Vysshaya Shkola, 1987. 352 p. 13. Trukhin Yu. P., Iodis V. A., Khainasova T. S. Microwave and ultrasound activation of kinetics of bacterial-chemical processes of leaching of cobalt-copper-nickel ores of the Shanuch deposit. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. S19. pp. 113–123. 14. Kallaev I. T., Kukhtina A. A., Kukhtina P. A., Nikolaeva N. V. Impact of ultrasound on grindability of copper-molybdenum ores. Uspekhi Sovremennogo Estestvoznaniya. 2024. No. 5. pp. 90–97. 15. Wang L., Sun Yu., Wang S., Zhan T., Lü G. Leaching mechanism of strategic metals from superalloy scrap under ultrasonic cavitation. Transactions of Nonferrous Metals Society of China. 2023. Vol. 33. pp. 304–314. 16. Adewuyi S. O., Ahmed H. A. M., Ahmed H. M. A. Methods of ore pretreatment for comminution energy reduction. Minerals. 2020. Vol. 10, Iss. 5. DOI: 10.3390/min10050423 17. Averyanova V. E., Ocheretyana S. O. Ways to improve kinetics of a chalcopyrite bioleaching process: A review. Tsvetnye Metally. 2024. No. 7. pp. 30–36. 18. Khainasova T. S. Factors affecting bacterial and chemical processes of sulphide ores processing. Zapiski Gornogo Instituta. 2019. Vol. 235. pp. 47–54. 19. Ocheretyana S. O., Averyanova V. E. Optimization of growth conditions for an autochthonous mixed culture of acidophilic bacteria isolated from oxidized ore of the Shanuch copper-nickel deposit. Obogashchenie Rud. 2024. No. 5. pp. 25–30. 20. Trukhin Yu. P., Stepanov V. A., Sidorov M. D., Kungurova V. E. Shanuch copper-nickel deposit: geological and geophysical model, composition and geochemistry of ores. Rudy i Metally. 2009. No. 5. pp. 75–81. 21. Trukhin Yu. P., Balykov A. A., Vainshtein M. B. Bacterial-chemical leaching of cobalt-copper-nickel ores and the technological scheme of processing of productive solutions of nickel and cobalt. Gornyi Informatsionno-analiticheskiy Byulleten'. 2017. No. S35. pp. 5–21. 22. Khmelev V. N., Barsukov R. V., Barsukov A. R., Tsyganok S. N., Nesterov V. A. Ultrasonic technological apparatus with five working tools of different diameters for scientific research. Yuzhno-Sibirskiy Nauchnyi Vestnik. 2022. No. 4. pp. 106–109. 23. Iodis V. A., Ocheretyana S. O. Study of the influence of ultrasound exposure on the kinetics of the process of bacterialchemical leaching of metals. Marksheyderiya i Nedropolzovanie. 2024. No. 5. pp. 44–48. |