Journals →  Obogashchenie Rud →  2025 →  #5 →  Back

BENEFICIATION PROCESSES
ArticleName Improving the efficiency of dry magnetic separation in magnetite ore beneficiation
DOI 10.17580/or.2025.05.04
ArticleAuthor Pelevin A. E.
ArticleAuthorData

Ural State Mining University (Ekaterinburg, Russia)
Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor, a-pelevin@yandex.ru

Abstract

Laboratory studies were conducted to evaluate methods for increasing the yield of dry magnetic separation (DMS) tailings to 30 % for titanomagnetite ore, with the iron content in tailings maintained below 6 %. Experiments were performed using ore feed sizes of P95 = 6, 10, and 30 mm, and both sequential and parallel enrichment schemes for large and small size fractions were tested. Theoretical analysis indicated that reducing the feed size from P95 = 30 mm to P95 = 10 mm allows for a decrease in the magnetic field induction required by the separator, resulting in lower capital and operating costs. Further justification was provided for the superior efficiency of two-drum separators compared to single-drum designs. Reducing the feed size from P95 = 30 mm to P95 = 6 mm increased tailings yield from 25.75 % to 36.75 %, while simultaneously lowering the iron content from 7.68% to 5.73%. However, processing at P95 = 6 mm increases crushing costs, reduces separator throughput, and leads to greater dust generation during dry separation. Implementing DMS with separate enrichment of size classes –12+6 mm and –6+0 mm improves technological performance but requires fine screening and complicates the process flow. Therefore, the recommended approach is DMS at a feed size of P95 = 10 mm using a two-drum separator with different magnetic field inductions for the upper and lower drums.

keywords Dry magnetic separation, tailings yield, iron content, magnetic field induction, drum magnetic separator, feed size, screening
References

1. Tsypin E. F., Ovchinnikova T. Yu., Efremova T. A. Efficiency of X-ray radiometric separation in preliminary concentration of ore. Gornyi Informatsionno-analiticheskiy Byulleten'. 2020. No. 3-1. pp. 431–442.
2. Ovchinnikova T. Yu., Efremova T. A., Tsypin E. F. Lower size grade limits in ore pretreatment using X-ray fluorescent separation. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 328–337.
3. Shibaeva D. N., Kompanchenko A., Tereschenko S. V. Analysis of the effect of dry magnetic separation on the process of ferruginous quartzites disintegration. Minerals. 2021. Vol. 11. Iss. 8. DOI: 10.3390/min11080797
4. Shibaeva D. N., Asanovich D. A., Malodushev K. A., Shamshura D. A. Development of a software package for systematization and analysis of research results of iron ore preparation characteristics: goals, objectives, first data. Gornaya Promyshlennost'. 2024. No. 6. pp. 99–106.
5. Tang D., Wang F., Dai H., Lu M., Gong Zh. Influence of separation chamber shape in dry magnetic separator on the dispersion and separation of multiple magnetites. Minerals Engineering. 2021. Vol. 171. Iss. 1. DOI: 10.1016/j.mineng.2021.107130
6. Liu J., Xue Z., Dong Zh., Yang X., Fu Ya., Man X., Lu D. Multiphysics modeling simulation and optimization of aerodynamic drum magnetic separator. Minerals. 2021. Vol. 11, Iss. 7. DOI: 10.3390/min11070680
7. Xie Sh., Hu Zh., Lu D., Zhao Y. Dry permanent magnetic separator: Present status and future prospects. Minerals. 2022. Vol. 12, Iss. 10. DOI: 10.3390/min12101251
8. Wang F., Zhang Sh., Zhao Zh., Gao L., Tong X., Dai H. Investigation of the magnetic separation performance of a low-intensity magnetic separator embedded with auxiliary permanent magnets. Minerals Engineering. 2022. Vol. 178. DOI: 10.1016/j.mineng.2022.107399
9. Li X., Wang Yu., Lu D., Zheng X., Gao X. Optimization of airflow field for pneumatic drum magnetic separator to improve the separation efficiency. Minerals. 2021. Vol. 11, Iss. 11. DOI: 10.3390/min11111228
10. Pelevin A. E. Increasing the efficiency of iron ore raw materials beneficiation by separation in an increased magnetic field. Chernye Metally. 2022. No. 1, рр. 31–36.
11. Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral processing technologies. Gornyi Zhurnal. 2017. No. 10. pp. 26–32.
12. Pelevin A. E. Increasing the efficiency of iron-ore dressing by separation in an alternative magnetic field. Chernye Metally. 2021. No. 5. рр. 4–9.
13. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. рр. 86–90.
14. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russian Collection, 2020. 376 p.
15. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrate in separate processing of different iron ore types and varieties. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 306–317.
16. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021, No. 11-1, рр. 293–305.
17. Korovnikov А. N., Trofimov V. А. Upon the possibilities of dry disintegrated materials classification process intensification. Obogashchenie Rud. 2017. No. 6. pp. 9–14.
18. Huang L., Pan M., Jiang H., et al. Kinematic characteristics of banana screen surface and operational parameter optimization for coal classification. International Journal of Coal Preparation and Utilization. 2020. Vol. 42, Iss. 5. pp. 1373–1392.
19. Geng R., Yu Ch., Wang Yi., Wang X., Zhang X., Li R. Effect of external moisture content on screening performance of vibrating flip-flow screen and circular vibrating screen. Minerals. 2023. Vol. 13, Iss. 5. DOI: 10.3390/min13050585
20. Baranov V. F. Designs of new operating copper processing plants: process types, equipment selection, industry trends. Obogashchenie Rud. 2021. No. 1. pp. 44–52.
21. Aleksandrova T. N., Chanturia A. V. Ore preparation process selection for ferruginous quartzites based on simulation modeling. Obogashchenie Rud. 2023. No. 1. pp. 3–9.
22. Baranov V. F. Projects which push the limits of efficient performance concepts of high-pressure grinding rollers. Gornyi Zhurnal. 2021. No. 11. pp. 33–38.
23. Yu J., An Ya., Gao P., Han Yu. High pressure grinding roll and magnetic separation for energy saving in grinding and simultaneously improving processing capacity: A case study of a magnetite ore. Mining, Metallurgy & Exploration. 2024. Vol. 41. pp. 1509–1522.
24. Chen K., Yin W. Differences in early rejection of gangue for low-grade iron ores with different textures from HPGR. Mineral Processing and Extractive Metallurgy Review. 2024. Vol. 45, Iss. 4. pp. 264–270.
25. Chen K., Yin W., Ding Ya., et al. Mineral liberation properties of iron ores with different grain sizes by particlebed breakage and traditional grinding. Mineral Processing and Extractive Metallurgy Review. 2024. Vol. 45, Iss. 7. pp. 814–823.
26. Gzogyan S. R., Gzogyan T. N., Mryasov M. R., Chakov V. N. Fine milling of Stoilensky oxidized quartzite. Gornyi Zhurnal. 2021. No. 6. pp. 54–60.
27. Li X., Wang Yu., Lu D., Zheng X. Influence of separation angle on the dry pneumatic magnetic separation. Minerals. 2022. Vol. 12, Iss. 10. DOI: 10.3390/min12101192
28. Tang D., Yan Yo., Tian X., et al. Separation mechanism of a pneumatic dry low-intensity drum magnetic separator and optimization of magnetic fields. Minerals Engineering. 2025. Vol. 231. DOI: 10.1016/j.mineng.2025.109451

Language of full-text russian
Full content Buy
Back