Журналы →  Obogashchenie Rud →  2025 →  №5 →  Назад

THEORY OF PROCESSES
Название Virtual model-based control of vibration machine operation
DOI 10.17580/or.2025.05.06
Автор Andrievsky B. R., Bushuev D. A., Zaytseva Yu. S.
Информация об авторе

Institute for Problems of Mechanical Engineering of the RAS (Saint Petersburg, Russia).

Andrievsky B. R., Leading Researcher, Doctor of Engineering Sciences, Associate Professor, boris.andrievsky@gmail.com
Zayсeva I. S., Researcher, Candidate of Engineering Sciences, juliazaytsev@gmail.com

Belgorod State Technological University named after V. G. Shukhov (Belgorod, Russia)

Bushuev D. A., Head of Chair, Candidate of Engineering Sciences, Associate Professor, dmbushuev@gmail.com

Реферат

A virtual model of a two-rotor vibration machine with mechanical imbalances generating vertical-plane vibrations is presented. Theelectromechanical components, including all major structural elements and electric motors, were modeled using the ADAMS. View software package, accurately replicating the real SV-2M tworotor mechatronic unit. The control system, based on a standard proportional-integral law for motor speed and phase shift regulation, was implemented in MATLAB / Simulink. Integration of ADAMS.View blocks into MATLAB / Simulink enables joint simulations that account for the complex nonlinear dynamics of the vibration machine. The virtual model of the machine incorporates a worktable for placing processed material, a feature absent in the actual installation. This addition enables experiments with granular materials, allowing for the modeling and observation of particle trajectories directly within the simulation environment, thereby eliminating the need for installing additional, costly sensors in the physical setup. A specially designed control law for the machine’s motors enables various movement modes of the worktable and the material being processed. The st udydemonstrates how different speed and phase shift settings influence the platform’s motion: synchronous motor rotation produces circular oscillations, while harmonic and chaotic phase shifts result in complex, irregular particle movements resembling mixing processes. The trajectories of bulk material particles are illustrated as a function of the selected motor control strategy, providing insights into optimizing vibration machine operation.
The work on the section «Virtual model of the SV-2M vibrating machine» was carried out within the framework of the FZVN-2025-0002 project at the Belgorod State Technological University named after V. G. Shukhov.

Ключевые слова Vibration technologies, mixing, intensification, modeling, digital twins, vibration control, screens
Библиографический список

1. Abdukalikova G. M., Sivachenko L. A., Kudaikulov M. K. The main issues of the initial stage of creating new technological equipment in the EAEU countries. Energy-resource-saving technologies and equipment in the machine-building, road and construction industries: Proc. of the International scientific and practical conference. Belgorod, BSTU named after V. G. Shukhov, September 21–23, 2023. pp. 9–13.
2. Sivachenko L. A. Technological engineering is an innovative reserve of the world economy. Mogilev: Belorus.-Russian University, 2017. 254 p.
3. Nikitin R. M., Lukichev S. V., Opalev A. S., Biryukov V. V. Adaptive models of process flow charts for mining and processing plants using machine learning technology. Obogashchenie Rud. 2024. No. 6. pp. 54–58.
4. Verenitsin A. I. 3D modeling as a basis for BIM model design for processing plants. Obogashchenie Rud. 2021. No. 2. pp. 33–39.
5. Bushuev D. A., Karikov E. B., Rubanov V. G., Alekseevsky S. V. Simulation the dynamics of hub-motors of an automatic guided vehicle in occurrence of planetary gear tooth defects. Journal of Physics: Conference Series. 2020. No. 1661. DOI: 10.1088/1742-6596/1661/1/012025
6. Zhang L., Liu J., Zhuang C. Digital twin modeling enabled machine tool intelligence: a review. Chinese Journal of Mechanical Engineering. 2024. Vol. 37. DOI: 10.1186/s10033-024-01036-2
7. Tian W., Zhang X. Economic development model and effective path of green industry. Ecological Chemistry and Engineering S. 2022. Vol. 29. pp. 403–418.
8. Blekhman I., Fradkov A., Tomchina O., Bogdanov D. Self-synchronization and controlled synchronization: general definition and example design. Mathematics and Computers in Simulation. 2002. Vol. 58, No. 4. pp. 367–384.
9. Blekhman L. I., Kremer E. B., Vasilkov V. B. Research on vibration processes and devices: New results and applications. Mechanics and Control of Solids and Structures. Ed. by V. A. Polyanskiy, A. K. Belyaev. Cham: Springer International Publishing, 2022. pp. 75–90.
10. Panovko G. Ya., Shokhin A. E. Self-synchronization of inertial vibration exciters in two-mass vibrating machines with an additional elastic element installed with a clearance. Problemy Mashinostroyeniya i Avtomatizatsii. 2022. No. 2. pp. 16–21.
11. Gorlatov D. V., Tomchin D., Tomchina O. P. Controlled passage through resonance for two-rotor vibration unit. Mechanics and model-based control of advanced engineering systems. Vienna: Springer, 2014. pp. 95–102.
12. Tomchina O. Digital control of the synchronous modes of the two-rotor vibration set-up. Cybernetics and Physics. 2023. Vol. 12, No. 4. pp. 282–288.
13. Gerasimov M. D., Zaiceva I. S. Research of possibility of using adaptive control system to reproduce asymmetrical oscillations on directed action vibration machine. Problemy Mashinostroyeniya i Avtomatizatsii. 2024. No. 1. pp. 115–121.
14. Andrievsky B., Zaitceva I., Sivachenko L. Enhancing functionality of two-rotor vibration machine by automatic
control. Cybernetics and Physics. 2024. Vol. 12, No. 4. pp. 289–295.
15. Blekhman I. I., Blekhman L. I., Yaroshevich N. P. Upon drive dynamics of vibratory machines with inertia excitation. Obogashchenie Rud. 2017. No. 4. pp. 49–53.
16. Ahmad I., Siddique B., Islam M., Haq Z., Niu Z., Waqas M., Yang Q., Qiu Z. Development and evaluation of digital twin model for rack and pinion drive vegetable seedling transmission device using Adams/MATLAB co-simulation. Simulation Modelling Practice and Theory. 2025. Vol. 142. pp. 103–132.
17. Guo F., Wang S., Liu D. A closed-loop dynamic controller for active vibration isolation working on a parallel wheel-legged robot. Chinese Journal of Mechanical Engineering. 2023. Vol. 36. DOI: 10.1186/s10033-023-00897-3

Language of full-text русский
Полный текст статьи Получить
Назад