Journals →  Tsvetnye Metally →  2012 →  #4 →  Back

METAL PROCESSING
ArticleName Identification of promising lines of research in the field of aluminum-based alloys using the electron theory of metals
ArticleAuthor Abuzin Yu. A., Nikitin N. Yu.
ArticleAuthorData

Center “Nanomaterials and Nanotechnologies”, National University of Science and Technology "MISIS" (MISiS)

Yu. A. Abuzin, Leading Researcher, Assistant Professor

 

National University of Science and Technology "MISIS" (MISiS)

N. Yu. Nikitin, Post Graduate Student, e-mail: nikitin5@yandex.ru

Abstract

The present study shows a way to design new aluminum-based alloys with transition metals. A method based on the electron theory of solids was chosen as the main approach to the design of alloys. As a result of theoretical studies a number of promising alloying elements such as wolfram and molybdenum have singled out. According to our calculations, influence of these elements on the creep resistance of the alloys is maximal. The presence of a number of alloying elements, maximally affect on the change in the elastic stress and their relation to the creep resistance of ordered aluminum-based substitution solutions is shown. In particular, it is such elements as Os and Ru. Alloys with selected alloying elements can be used as construction materials in the aviation and aerospace industry, and are able to demonstrate good mechanical properties. Previously, none of these metals were not included in the list of major alloying elements that form the dispersed hardening of aluminum, because the doping of the aluminum melt with high-melting elements causes significant technological difficulties due to the fact that the dissolution of transition metals in aluminum is inhibit by the formation of solid intermetallic layer, greatly reducing solubility of these metals in aluminum. To prevent this and to obtain aluminum alloys doped with W, Mo, Os and Ru a method, based on the formation of a «precursor» of the solid solution during mechanical activation of starting mixtures of elementary powders to form a solid mixture of aluminum matrix with nanosized particles of refractory alloying elements was proposed.

keywords Mechanical properties, transition metals, aluminum, mechanical activation, nanosized particles, dispersion hardening, electron theory of metals
References

1. Kittel Ch. Vvedenie v fiziku tverdogo tela (Introduction to the physics of solid body). Moscow : Nauka, 1978. 789 p.

2. Blanter B. Ye., Blanter M. S. The interaction of impurity atoms with dislocations in iron. NASA Technical Translation (TT F-14). Washington : NASA, 1972. Vol. 298.

3. Shtremel M. A. Prochnost splavov. Ch. II. Deformatsiya : uchebnik dlya vuzov (Durability of alloys. Part II. Deformation : textbook for institutes of higher education). Moscow : MISIS, 1997.

4. Blochl P. E. Projector augmented-wave method. Phys. Rev. B. 1994. Vol. 50, No. 24. pp. 17953.

5. Kress G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999. Vol. 59, No. 3. p. 1758.

6. Kress G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993. Vol. 47, No. 1. p. 558.

7. Kress G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994. Vol. 49, No. 20. p. 14251.

8. Kress G., Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mat. Sci. 1996. Vol. 6, No. 1. p. 15.

9. Kress G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996. Vol. 54, No. 6. p. 11169.

10. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1992. Vol. 46, No. 11. p. 6671.

11. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Erratum: Atoms, molecules, solids, and surfaces: Аpplications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1993. Vol. 48, No. 7. p. 4978.

12. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1972. Vol. 13, No. 12. p. 5188.

13. Razumovskii I. M., Ruban A. V., Razumovskiy V. I., Logunov A. V., Larionov V. N., Ospennikova O. G., Poklad V. A., Johanson B. New generation of Ni-based superalloys designed on the basis of first-principles calculations. Mater. Sci. Eng. A. 2008. Vol. 497, No. 1/2. pp. 18–24.

14. Brooks M. S., Johansson B. Exchange integral matrices and cohesive energies of transition metal atoms. J. Phys. Met. Phys. 1983. Vol. 13, No. 10. p. L197.

15. Nikitin N. Yu. Issledovanie iz pervykh printsipov vliyaniya relaksatsii na splavoobrazovanie v sisteme alyuminiy 3d-perekhodnye metally (Research from the first principles of relaxation influence on the obtaining of alloys in the aluminium 3d-transition metals system). Fizika Metallov i Metallovedenie – Physics of Metals and Metallography. 2012. No. 4.

16. Pettifor D. G. Bonding and structure of molecules and solids. Oxford : Clarendon press, 1995. 269 p.

17. Metallovedenie : uchebnik. V 2 t. T. II (Metallography: tutorial. In 2 vol. Vol. II). Under the general editorship of V. S. Zolotorevskiy. Moscow : MISIS, 2009. 528 p.

18. Zolotorevskiy V. S., Belov N. A. Metallovedenie liteynykh alyuminievykh splavov (Metallography of the casting aluminium alloys). Moscow : MISIS, 2005. 376 p.

19. Napalkov V. I., Makhov S. V. Legirovanie i modifitsirovanie alyuminiya i magniya (Alloying and modification of aluminium and magnesium). Moscow : MISIS, 2002. 376 p.

20. Sinelnikova V. S., Podergin V. A., Rechkin V. N. Alyuminidy (Aluminides). Kiev : Naukova dumka, 1965.

Language of full-text russian
Full content Buy
Back