Journals →  Tsvetnye Metally →  2012 →  #6 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Theoretical analysis of the alloying system and principles of the creating of a new generation of high-temperature nickel alloys by method of the granular metallurgy
ArticleAuthor Beresnev A. G., Razumovskiy V. I., Logachev A. V., Razumovskiy I. M.
ArticleAuthorData

OJSC “Kompozit”

A. G. Beresnev, Chief Executive Officer

A. V. Logachev, Head of a Division

I. M. Razumovskii, Chief Researcher, e-mail: razumovskii@yahoo.com

 

Department of Мaterials Science and Engineering, Royal Institute of Technology

V. I. Razumovskiy, Post Graduate Student

Abstract

There is suggested a new approach to chose the alloying system of high-temperature nickel alloys with a polycrystalline structure. This approach is based on a concept, in which, the creep-resistance of hightemperature alloys is mainly determined by interatomic bonding in the bulk of γ-matrix and on the grain boundaries. The work of separation (Wsep) parameter is introduced as the fundamental characteristics of the mechanical durability of the boundary. This parameter is also introduced for finding the contribution of each alloying element in the grain boundaries' durability. The χ parameter is introduced for the estimation of the alloying elements on the bond strength of atoms in matrix. This parameter represents the partial molar energy of the matrix cohesy. On the basis of the results of the first principles' calculations, the value of the energy of grain boundary segregation of elements is analyzed: Wsep and χ parameters in the alloys of Ni – X system, where X is a typical alloying (W, Re, Ta, Zr, Hf, Nb) or microalloying (B) element or impurity (S, Bi) in high-temperature nickel alloys. The alloying elements, which have both large values of the parameter χ and the largest positive effect on the Wsep of Ni – Х alloys are classified as the “low alloying elements” and are found among the alloying elements under consideration. According to the researched approach, the “low alloying elements” are the elements with high tendency to obtain the grain boundary segregation. These elements also make the grain boundaries more durable and at the same time fixate the atom relations in the bulk of the matrix. A sum of low alloying elements (Σ = Zr + Hf + Nb + Ta) is introduced into the new high-temperature alloy, which is obtained by method of the granular metallurgy. The rest of the alloying elements have been chosen in order to fulfill a number of requirements for: a) lattice constants of γ- and γ’-phase (misfit); b) the γ’-phase solvus temperature; c) propensity to form the topologically close packed phases. The mechanical properties of the new alloy within the high temperatures exceed the mechanical properties of one of the best Russian alloys EP741NP (nickel high-temperature granulate alloy ЭП741НП).

keywords First principle calculations, grain boundaries, cohesion, high temperature nickel alloys, powder metallurgy
References

1. Beresnev A. G., Razumovskiy I. M., Logunov A. V., Logacheva A. I. Tekhnologiya Metallov – Technology of metals. 2009. No. 12. pp. 24–37.

2. Garibov G. S., Vostrikov A. V. Current trends of PM superalloys discs production technology for gas turbine engines. Proceedings of the 2005 International Conference on Hot Isostatic Pressing. Paris, 2005. pp. 86–91.

3. Garibov G. S. Tekhnologiya legkikh splavov – Technology of lightweight alloys. 2001. No. 5/6. pp. 138–148.

4. Fatkullin O. Kh. Tekhnologiya legkikh splavov – Technology of lightweight alloys. 2005. No. 1/4. pp. 24–31.

5. Kablov E. N., Petrushin N. V., Svetlov I. L. Kompyuternoe konstruirovanie zharoprochnogo nikelevogo splava IV pokoleniya dlya monokristallicheskikh lopatok gazovykh turbin (Computer constructions of the IV-th generation high-temperature nickel alloy for monocrystall gas turbine blades). Liteynye zharoprochnye splavy. Effekt S. T. Kishkina : sbornik (Casting high-temperature alloys. Effect of S. T. Kishkin : collection). Moscow : Nauka, 2006. pp. 98–115.

6. Caron P. High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000. Under the editorship of T. M. Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green, M. McLean, S. Olson, J. J. Schirra. 2000. pp. 737–746.

7. Morinaga M., Yukawa N., Adachi H., Ezaki H. Superalloys. 1984. Under the editorship of M. Gell et al. 1984. p. 523.

8. Bokshteyn S. Z., Ginzburg S. S., Kishkin S. T., Razumovskiy I. M. Diffuziya po granitsam faz. Poverkhnost 1 (Diffusion on the phases` boundaries. Surface 1). 1984. p. 5.

9. Bokshteyn S. Z., Bolberova E. V., Kishkin S. T., Kuleshova E. A., Logunov A. V., Mishin Yu. M., Razumovskiy I. M. Doklady Akademii Nauk SSSR – Reports of USSR Academy of Sciences. 1980. Vol. 253. p.1377.

10. Bokshteyn S. Z., Bolberova E. V., Ignatova I. N., Kishkin S. T., Razumovskiy I. M. Fizika metallov i metallovedenie – The Physics of Metals and Metallography. 1985. Vol. 59. p. 936.

11. Liteynye lopatki gazoturbinnykh dvigateley : sbornik (Founding blades of gas-turbine engines : collection). Under the editorship of E. N. Kablov. Moscow : MISiS, 2001. 632 p.

12. Reed R. C. The Superalloys. Fundamentals and Applications. N. Y. Cambridge University Press. 2008. 372 p.

13. Ruban A. V., Skriver H. L., Norskov J. K. Surface segregation energies in transition-metal alloys. Physical Review B. 1999. Vol. 59. p. 15990.

14. Finnis M. W. The theory of metal–ceramic interfaces. Journal of Physics: Condensed Matter. 1996. Vol. 8. p. 5811.

15. Rice J. R., Wang J.-S. Embrittlement of Interfaces by Solute Segregation. Materials Science and Engineering. 1989. Vol. A 107. 23.

16. Razumovskii I. M., Ruban A. V., Razumovskiy V. I., Logunov A. V., Larionov V. N., Ospennikova O. G., Poklad V. A., Johansson B. New generation of Ni-based superalloys designed on the basis of first-principles calculations. Materials Science and Engineering. 2008. Vol. 497. pp. 18–24.

17. Logunov A. V., Razumovskiy I. M., Larionov V. N., Ospennikova O. N., Poklad V. A., Ruban A. V., Razumovskiy V. I. Perspektivnye materialy – Journal of Advanced Materials. 2008. No. 2. pp. 10–18.

18. Razumovskiy V. I., Lozovoi A. Y., Razumovskii I. М., Ruban A. V. Analysis of the alloying system in Ni-base superalloys based on ab initio study of impurity segregation to Ni grain boundary. Advanced Materials Research. 2011. Vol. 278. pp. 192–197.

19. Blöhl P. E. Projector augmented-wave method. Physical Review B. 1994. Vol. 50. p. 17953.

20. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B. 1999. Vol. 59. p. 1758.

21. Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B. 1993. Vol. 47. p. 558.

22. Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B. 1994. Vol. 49. p. 14251.

23. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B. 1996. Vol. 54. p. 11169.

24. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996. Vol. 77. p. 3865.

25. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations. Physical Review B. 1972. Vol. 13. p. 5188.

26. Lozovoi A. Y., Paxton A. T. Physical Review B. 2008. Vol. 77. p. 165413.

27. Park L. J., Ryu H. J., Hong S. H., Kim Y. G. Microstructure and mechanical behavior of mechanically alloyed ODS Ni-base superalloy for aerospace gas turbine application. Advanced Performance Materials. Vol. 5. 1998. pp. 279–290.

28. Beresnev A. G., Logunov A. V., Logacheva A. I., Taran P. V., Logachev A. V., Razumovskiy I. M. Zharoprochnyy granulirovannyy splav na osnove nikelya (High-temperature pettetized alloy on the basis of nickel). Patenr RF, No. 2386714. Asserted 25.12.2008. Published 20.04.2010. Bulletin No. 11.

Language of full-text russian
Full content Buy
Back