Journals →  Chernye Metally →  2012 →  #9 →  Back

Development of metallurgy in Russia and CIS
ArticleName Up-to-date approaches to production of low-carbon micro-alloyed tube steel at Steckel mills
ArticleAuthor Yu. D. Morozov, E. A. Goli-Oglu, S. Yu. Nastich, A. V. Knyshev.
ArticleAuthorData

Central Scientific and Research Institute of Ferrous Metallurgy (TsNIIchermet) named after I. P. Bardin, Moscow, Russia:

Morozov Yu. D., Cand. Eng., Director

Goli-Oglu E. A., Cand. Eng., Senior Research Fellow, Goli-Oglu@yandex.ru

Nastich S. Yu., Cand. Eng., Leading Scientific Fellow

  

Chelyabinsk Tube Rolling Works, Chelyabinsk, Russia:

Knyshev A. V., Head of Technological Department

Abstract

The features of up-to-date technologies of manufacturing high-strength rolled products of large diameter tubes for gas pipelines are described applying to the Steckel rolling mills. Chemical composition of processed tube steels is analyzed and metal-scientific substantiation of the choice of scope of the main production facilities is presented. Austenite structure of labour samples after simulation of different rolling procedures in roughing rolling is examined for different partial reduction, as well as dispersed ferrite-bainite microstructure of rolled steel with K60 strength class. The main technical and technological advantages and deficiencies of manufacturing process of high-strength rolled tubes at these mills, including location plan, dimension range and productivity, are noted. It is shown that Steckel mill with three furnace coilers is located after the heavy plate rolling mill. Priority directions of improvement of the technology and equipment at the Steckel mill are reviewed. Combining up-to-date technologies of controlled rolling with additional improvements in alloying concept of low-carbon tube steel that are processed in Steckel mills opens new potential possibilities for manufacture of high-strength and high-tough rolled products for tube pipelines.

keywords Steckel mills, low-carbon micro-alloyed tube steels, heavy plates, controlled rolling, technology, austenite microstructure, ferrite-bainite microstructure
References

1. Shabalov I. P., Shafigin E. K., Odesskiy P. D.  Stal — Steel in Translation. 2010. No. 12. pp. 54–60.

2. Mazur I. I., Ivantsov O. M. Bezopasnost truboprovodnykh sistem (Safety of piping systems). Moscow : “ELIMA” Publ., 2004. 1104 p.

3. Markovich V. Metallosnabzhenie i sbyt — Metal Supply and Sales. 2008. No. 1. pp. 100–106.

4. Lederer A. Chernye Metally — Ferrous metals. 1993. No. 9. pp. 39– 48.

5. Taller G., Djumlija G. et al. Metallurgicheskoe proizvodstvo i tekhnologiya — Metallurgical Plant and Technology International (МРТ). 2005. No. 2. pp. 34–44.

6. Konovalov Yu. V., Goloshchapov D. A., Khokhlov A. S. Byulleten “Chernaya metallurgiya” — Bulletin “Ferrous metallurgy”. 2011. No. 8. pp. 65–69.

7. Wilson E., Petryka G. Chernye Metally — Ferrous metals. 1994. No. 11. pp. 47–54.

8. Wilson A. TSP, a new method of this slab casting and rolling. Metallurgical Plant and Technology. 1994. Vol. 17, No. 3. pp. 122–130.

9. Chempion N. Stal — Steel in Translation. 2005. No. 8. pp. 59–62.

10. Belobrov Yu. N., Barabash A. V., Stech V. S. Metallurg — Metallurgist. 2004. No. 8. pp. 46–51.

11. Kneppe G., Rode V. Chernye Metally — Ferrous metals. 1993. No. 12. pp. 33–43.

12. Morozov Yu. D., Naumenko A. A. Metallurg — Metallurgist. 2009. No. 11. pp. 51–55.

13. Yoshie A., Fujita T., Fujioka M. Effect of Dislocation Density in an Unrecrystallized Part of Austenite on Growth Rate of Recrystallizing Grain. ISIJ International. 1996. Vol. 36, No. 4. pp. 444–450.

14. Medina S., Quispe A. Improved Model for Static Recrystallization Kinetics of Hot Deformed Austenite in Low Alloy and Nb/V Microalloyed Steels. ISIJ International. 2001. Vol. 41, No. 7. pp. 774–781.

15. Morozov Yu. D., Nastich S. Yu., Matrosov M. Yu. et al. Metallurg — Metallurgist. 2008. No. 1. pp. 41–47.

16. Collins L. E. Processing of niobium-containing steels by Steckel mill rolling. Niobium. Science and technology. Proceedings of the International Symposium Niobium 2001 held in Orlando. Florida. USA. December 2–5, 2001. pp. 427–500.

17. Nastich S. Yu., Shulga E. V., Lyasotskiy I. V. et al. Stal — Steel in Translation. 2011. No. 12. pp. 48–54.

18. Gray J. M. Evolution of microalloyed linepipe steels with particular emphasis on the “Near Stoichiometry” low carbon, 0.10 percent niobium “HTP” Concept. In: Proceedings 6 International Conference on High Strength Low Alloy Steels (HSLA Steels 2011). Journal of Iron and Steel Research International. 2011. Vol. 18, Supplement 1–2. pp. 652–657.

19. Morozov Yu. D., Korchagin A. M., Orlov V. V. et al. Metallurg — Metallurgist. 2009. No. 3. pp. 43–49.

20. Stepanov P. P., Zikeev V. N., Efron L. I. et al. Metallurg — Metallurgist. 2010. No. 11. pp. 62–67.

21. Heisterkamp F., Hulka K., Matrosov O. I. et al. Niobiysoderzhashchie nizkolegirovannye stali (Niobium containing low alloyed steels). Moscow : “Intermet Engineering”, 1999. 94 p.

22. Efron L. I., Morozov Yu. D., Goli-Oglu E. A. Metallurg — Metallurgist. 2011. No. 1. pp. 69–74.

23. Morozov Yu. D., Pemov I. F., Goli-Oglu E. A. et al. Metallurg — Metallurgist. 2011. No. 12. pp. 49–56.

24. Knutsen R. D., Parker S. Analysis of Microstructure Evolution during Steckel Mill Rolling. ISIJ International. 2008. Vol. 48, No. 2. pp. 200–207.

25. Nastich S. Yu., Filatov N. V., Morozov Yu. D. et al. Stal — Steel in Translation. 2009. No. 9. pp. 82–87.

26. Scholtz E., Craig I. K., Pistorius P. C. Modelling for Control of a Steckel Hot Rolling Mill. ISIJ International. 2000. Vol. 40, No. 10. pp. 1003–1012.

27. Freyer B. H., Craig I. K., Pistorius P. C. Gauge and Tension Control during the Acceleration Phase of a Steckel Hot Rolling Mill. ISIJ International. 2003. Vol. 43, No. 10. pp. 1562–1571.

28. Chempion N. G. Chernye Metally — Ferrous metals. 2004. No. 2. pp. 79–84.

29. Otavio L., Berger D., Djumlija G. et al. Steel Times International (Russian language issue). September, 2006. No. 17. pp. 16–19.

Language of full-text russian
Full content Buy
Back