Journals →  Chernye Metally →  2016 →  #10 →  Back

Metal science and metallography
ArticleName Anomalies in the structure and properties near three vertical lines on the “iron-carbon” diagram by D. K. Chernov
ArticleAuthor K. Yu. Shakhnazarov, E. I. Pruakhin
ArticleAuthorData

St. Petersburg State Mining University (St. Petersburg, Russia):

Shakhnazarov K. Yu., Cand. Eng., Ass. Prof., the Chair of Material Science and Technology of Art Objects, e-mail: karen812@yandex.ru
Pryakhin E. I., Dr. Eng., Prof., Head of the Chair of Material Science and Technology of Art Objects, e-mail: mthi@spmi.ru

Abstract

Many literary sources includes state diagrams of binary alloys with smooth lines of phase transformations, differing from the experimental data. At the same time, the true trajectory of these lines, which determines in particular the actual interval of solidification, plays an important role in the analysis of influence of the features of the crystallization interval on the performance parameters of the alloys. The lines of the state diagram of alloys are considered as concentration dependences of the extent in relation to the temperature of crystallization and recrystallization intervals. Qualitative variation of these intervals is a fundamental feature of congruent and incongruent melting phases, as well as compounds such as σ-phase, that are ordered in the solid state compounds (Kurnakov point), and which are interesting not with their structure, but with their special properties. Qualitative variation of crystallization (recrystallization) intervals and anomalies of properties are the fundamental features of these compounds. The term «Qualitative variation of crystallization interval» (QVCI) is explained on the example of Fe – C diagram. QVCI occurs in the point E (~ 2% C) due to solidus line bending and in the point B (~ 0,5% C) due to liquidus line bending. Thus, any non-monotonicity in liquidus (or solidus) with a monotonic course of the solidus (or liquidus) generates QVCI. Qualitative variation of recrystallization interval takes place in the point S (~ 0,85% C), where three lines (GOS, ES and PSK) cross. About century ago, the name «gardenit» and Fe24C formula (Arnold’s subcarbide) has been given to austenite eutectoid composition. An attempt to link the anomalies of steel properties with ~ 0.5–0.85 and ~ 2% C with intermediate phases of Fe42C, Fe24C and Fe10C composition and to build the respective vertical lines across these phases in the Fe – C diagram, has been made in this paper.

keywords Fe-C state diagram, crystallization, intermediate phases, austenite, martensite, peritectics, eutectics, peritectoid, eutectoid
References

1. Baum B. A., Khasin G. A., Tyagunov G. V., Klimenkov E. A., Bazin Yu. A., Kovalenko L. V., Mikhaylov V. B., Raspopova G. A. Zhidkaya stal (Liquid steel). Moscow : Metallurgizdat, 1984. 208 p.
2. Bochvar A. A. Metallovedenie (Metal science). Moscow : Metallurgizdat, 1956. 495 p.
3. Vertman A. A., Samarin A. M. Svoystva rasplavov zheleza (Iron melt properties). Moscow : Nauka, 1969. 280 p.
4. Vol A. E. Stroenie i svoystva dvoynykh metallicheskikh sistem (Structure and properties of double metallic systems). In four volumes. Volume 2. Moscow : State Publishing House of Physical and Mathematical Literature, 1962. 982 p.
5. Gudremon E. Spetsialnye stali (Special steels). In two volumes. Volume 1. Moscow : Metallurgizdat, 1959. 952 p.
6. Gulyaev A. P. Metallovedenie (Metal science). Moscow : Metallurgiya, 1966. 480 p.
7. Elanskiy G. N. Stroenie i svoystva metallicheskikh rasplavov (Structure and properties of metallic melts). Moscow : Metallurgiya, 1991. 160 p.
8. Elanskiy G. N., Kudrin V. A. Stroenie i svoystva zhidkogo metalla — tekhnologiya plavki — kachestvo stali (Structure and properties of liquid metal – technology of smelting – steel quality). Moscow : Metallurgiya, 1984. 239 p.
9. Ershov G. S., Poznyak L. A. Mikroneodnorodnost metallov i splavov (Microinhomogeneity of metals and alloys). Moscow : Mashinostroenie, 1985. 214 p.
10. Ivanova V. S., Terentev V. F. Fizicheskaya priroda i zakonomernosti razrusheniya (Physical nature and regulatities of destruction). Sbornik «Metallovedenie». Materialy simpoziuma po metallurgii i metallovedeniyu, posvyashchennogo 100-letiyu otkrytiya D. K. Chernovym polimorfi zma zheleza («Metal science» collection. Materials of the symposium on metallurgy and metal science, devoted to the 100-th anniversary of iron polymorphism discovery by D. K. Chernov). Moscow : Nauka, 1971. pp. 231–235.
11. Kornilov I. I. Fiziko-khimicheskie osnovy zharoprochnosti splavov (Physical and chemical basis of heat-resistance of alloys). Moscow : Publishing House of USSR Academy of Sciences, 1961. 516 p.
12. Kornilov I. I. Sostoyanie i perspektivy issledovaniya v oblasti metallidov (State and prospects of investigation in metalides area). Sbornik «Metallovedenie». Materialy simpoziuma po metallurgii i metallovedeniyu, posvyashchennogo 100-letiyu otkrytiya D. K. Chernovym polimorfizma zheleza («Metal science» collection. Materials of the symposium on metallurgy and metal science, devoted to the 100-th anniversary of iron polymorphism discovery by D. K. Chernov). Moscow : Nauka, 1971. pp. 246−257.
13. Meskin V. S. Ferromagnitnye splavy i ikh svoystva (Ferromagnetic alloys and their properties). Leningrad – Moscow, 1937. 791 p.
14. Moroz L. S. Tonkaya struktura i prochnost stali (Fine structure and steel durability). Moscow : Metallurgizdat, 1957. 159 p.
15. Nikitin V. I., Nikitin K. V. Nasledstvennost v litykh splavakh (Heredity in cast alloys). Moscow : Mashinostroenie, 2005. 476 p.
16. Paul Oberhoffer. Tekhnicheskoe zhelezo (Das technische Eisen). Moscow – Leningrad : Metallurgizdat, 1940. 535 p.
17. Osipov K. A., Miroshkina E. M. Tverdost γ-tverdogo rastvora sistemy zhelezo–uglerod pri vysokikh temperaturakh (Solidity of γ-solid solution of iron-carbon system with high temperatures). Doklady Akademii Nauk SSSR = Reports of USSR Academy of Sciences. 1954. Vol. 9, No. 6. pp. 1065–1067.
18. Saldau P. Ya. Osobye svoystva evtektoidnoy stali (Basic properties of eutectoid steel). Zhurnal Russkogo metallurgicheskogo obshchestva = Journal of Russian metallurgical society. 1916. Part 1, No. 3–4. pp. 112–148.
19. Samarin A. M., Fedotov S. G., Fedotov I. P., Sinodova E. P. Struktura i svoystva splavov zheleza s uglerodom (Structure and properties of iron alloys with carbon). Sbornik «Metallovedenie». Materialy simpoziuma po metallurgii i metallovedeniyu, posvyashchennogo 100-letiyu otkrytiya D. K. Chernovym polimorfi zma zheleza («Metal science» collection. Materials of the symposium on metallurgy and metal science, devoted to the 100-th anniversary of iron polymorphism discovery by D. K. Chernov). Moscow : Nauka, 1971. pp. 231–235.
20. Todorov R. P., Khristov Khr. G. O vidmanshtettovykh strukturakh uglerodistykh staley (About the widmanstätten patterns of carbonaceous steels). Metallovedenie i Termicheskaya Obrabotka Metallov = Metal science and heat treatment. 2004. No. 2. pp. 3–7.
21. Tyrkel E. Istoriya razvitiya diagrammy zhelezo–uglerod (History of development of iron-carbon diagram). Moscow : Mashinostroenie, 1968. 280 p.
22. Hansen M. Struktury binarnykh splavov (Structures of binary alloys). In two volumes. Volume 1. Leningrad – Moscow : Metallurgizdat, 1941. 640 p.
23. Chernov D. K. Pismo redaktoru «Zhurnala Russkogo metallurgicheskogo obshchestva» (A letter to the editor of the «Journal of Russian metallurgical society»). Zhurnal Russkogo metallurgicheskogo obshchestva = Journal of Russian metallurgical society. 1916. Part 1, No. 3-4. pp. 189–200.
24. Shakhnazarov K. Yu. Svyaz zhidkotekuchesti binarnykh splavov s kachestvennymi izmeneniyami protyazhennosti po temperature intervala kristallizatsii (Connection of fl uidity of binary alloys with qualitative changes of temperature dimensions of crystallization range). Liteyshchik Rossii = Russian foundry worker. 2008. No. 2. p. 46.

Language of full-text russian
Full content Buy
Back