Journals →  Chernye Metally →  2020 →  #2 →  Back

Rolling and other Metal forming processes
ArticleName Modeling of the stress-strain state of a metal during plastic forming of a sheet blank and welding of large diameter pipes. Report 1
ArticleAuthor A. P. Kolikov, D. Yu. Zvonarev, M. I. Taupek
ArticleAuthorData

National University of Science and Technology “MISiS” (Moscow, Russia):

A. P. Kolikov, Dr. Eng., Prof., Metal Forming Dept., e-mail: apkolikov@mail.ru

 

All-Russian Scientific and Research Institute of Tube Industry — RosNITI (Chelyabinsk, Russia):
D. Yu. Zvonarev, Cand. Eng., Head of Helical Rolling Lab., e-mail: zvonarev@rosniti.ru

 

Moscow Polytechnic University (Elektrostal, Russia):
I. M. Taupek, Cand. Eng., Associate Prof., Head of Metal Forming Dept. in Elektrostal affiliate

Abstract

The results of physical and mathematical modeling of the stressstrain state of a metal during plastic shaping of a sheet blank and welding of large diameter pipes have been summarized and the results of studies of stresses (residual) and accumulated strains during step forming in press equipment according to the JCO scheme have been presented. It was shown that residual tensile stresses, whose distribution is extremely uneven, appear in each operation of the technological stage as a result of elastic-plastic bending of the sheet, which leads to an uneven distribution of the geometric parameters of the formed profile. Mathematical models allow to use a package of computer programs to select rational parameters for forming a pipe profi le taking into account residual stresses and deformations and to obtain a workpiece with side set edges (splined tube assembly) of the required geometric dimensions for subsequent tech nological operations: shaping, welding and calibration of large diameter pipes (LDP) ) The proposed mathematical models for calculating residual stresses are recommended for use in evaluating the geometric dimensions of a welded pipe.

keywords Мathematical models, sheet blank forming, large diameter pipes, press tools, assembly and welding mill, pipe expansion
References

1. Osadchy V. Ya., Kolikov А. P. Production and quality of steel pipes. Moscow: MGUPI, 2012. 370 p.
2. Ushakov А. S., Kondratov L. А. About production of steel pipes. Stal. 2018. No. 7. pp. 37–49.
3. Efron L. I. Metallurgical science in the “big” metallurgy. Pipe steel. Moscow: Мetallurgizdat, 2012. 696 p.
4. Asahi H., Hara T., Tsuru E. Development 0f Ultra-high strength Linepipe, X120. Nippon Steel Technical Report. 2004. No. 90. pp. 82–87.
5. Hillenbrand H. G., Graef M. K., Groil-Weege J. Development of line pipe for deepwater applications. Proc. Of the 12th International Off-shore and Polar Engineering Conference 8 Exhibition (ISOPE-2002, May, Japan).
6. Adeeb S., Horsley D. Investigation the Eff ect of UOE Forming Process on the Buckling of Line Pipes Using Finite Element Modeling. Proc. of the Int. Pipeline Conference IPC 2006 (September 2006, Canada). pp. 169–174.
7. Barykov А. М., Stepanov P. P., Ringinen А. А. et. al. Development of the technology and production of rolled products and tubes of X100 strength grade. Development of technologies for steel, rolled articles and tubes production at Vyksa production site: Collection of works. Moscow: Metallurgizdat, 2016. pp. 425–437.
8. Deriks V., Genzer B. Novel technologies for economical and flexible production og large diameter tubes. Proceedings of the XIII International scientific and practical conference «Tubes 2005». Part. I. Chelyabinsk: JSC RosNITI, 2005. pp. 105–108.
9. Kolikov A. P., Leletko A. S., Matveev D. B. et al. Investigation residual stress in welded pipe. Steel in Translation. 2014. Vol. 44, Iss. 11. pp. 808–812.
10. Stepanov P. P., Maltsev V. V., Shishinovsky M. P. Resudual stresses at different modes of bending. Proceedings of the XIII International scientific and practical conference «Tubes 2006». Part. II. Chelyabinsk: JSC RosNITI, 2006. pp. 36–39.
11. Zvonarev D. Yu. Improvement of processes for edge forming and incremental skelping of welded large diameter tubes to ensure high precision of sizes and forms: Dissertation … of Candidate of Engineering Sciences. Chelyabinsk, 2015. 166 p.
12. Seleznev V. Е., Aleshin V. V., Pryalov S. I. Basis for numerical modeling of main pipelines. 2nd edition, revised and supplemented. Edited by V. Е. Seleznev. Moscow: MAKS-Press, 2009. 436 p.
13. Burkin Yu. N., Loginov Yu. N., Tropotov А. V., Gorlanov М. А., Semenov V. P. Analysis of methods for determination and removal of residual stresses in tubular billets. Proceedings of the Ist Russian conference on tube production «Achievements, theory and practice of tube production» (Ekaterinburg, 10–12 March 2004). Yekaterinburg: GOU VPO «UGTU UPI», 2004. pp. 87–97.
14. Matveev Yu. М., Ivantsov V. Ya., Grum-Grzhimaylo N. А. Production of electric-welded large diameter tubes. Moscow: Metallurgiya, 1968. 192 p.
15. Lifeng Fan, Ying Gao, Qiang Li, Hongshen Xu. Quality Control on Crimping of Large Diameter Welding Pipe. Chinese Journal of Мechanical Engineering. 2012. Vol. 25. No. 6. pp. 1264–1274.
16. Kishiguchi T., Hosoda H., Ikuno Y. Pipe end round equipment and control system (PERFECTS). Chin-Niittetsu-Sumikin Engineering Gino. 2013. No. 4. pp. 39–45.
17. Katsumi M., Kenji O. Steel Products for Energy Industries. JFE Technical Report. 2013. Vol. 43. No. 18. pp. 1–11.
18. Kolikov A. P., Romantsev B. А., Aleshchenko А. S. Metal forming: theory of tube production processes: tutorial. Moscow: Izdatelsky Dom NITU «MISiS», 2019. 502 p.
19. Galkin V. V., Cheburkov А. S., Pachurin G. V. Stress-strain analysis for metal of tubular billets produced by incremental skelping using mathematical modeling method. Sovremennye problemy nauki i obrazovaniya. 2013 No. 2. [electronic resource] Available at: https://elibrary.ru/download/elibrary_21285484_39419686.pdf (accessed: 27.01.2020).
20. Samusev S. V., Fadeev V. А., Skripalenko М. М. Physical modeling of the tubular billet forming process to produce electric-welded tubes by the UOE scheme. Proizvodstvo prokata. 2018. No. 2. pp. 24–29.
21. Samusev S. V., Aleshchenko А. S., Fadeev V. А. Modeling of the process for continuous forming of longitudinal welded tubes at the TESA 10-50 simulator basis. Izvestiya vysshikh uchebnykh zavedeny. Chernaya metallurgiya. 2018. Vol. 61. No. 5. pp. 378–384.
22. Samusev S. V., Zhigulev G. P., Skripalenko М. М., Fadeev V. А. Research of technological parameters of billet stepwise forming in production of large diameter tubes at tube electric pipe welded line TESA 1420. Chernye Metally. 2017. No. 9. pp. 73–77.
23. Chechulin Yu. B., Boklag N. Yu. Physical modeling of tube forming using assembled tool. Proceedings of the Х1Х International scientific and technical conference «Tubes-2011» Part 1. Chelyabinsk: JSC RosNITI, 2010. pp. 224–225.
24. Shinkin V. N. The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Message 1. Curvature of sheet. CIS Iron and Steel Review. 2016. Vol. 12. pp. 37–40.
25. Shinkin V. N., Kolikov A. P. Elastoplastic shaping of metal in an edge-bending press in the manufacture of large-diameter pipe. Steel in Translation. 2011. Vol. 41. No. 6. pp. 528–531.
26. Khanzhinsky G. М. Mechanics of small cracks and reliability of pipeline elements. Moscow: INEK, 2007. 295 p.
27. Belevich А. V. Modeling of plasticity and deformation resistance parameters of steels and alloys. Practical course on technological mechanics. Vladimir: Izdatelstvo VlGU, 2005. 84 p.
28. Migachev B. А., Potapov А. I. Plasticity of tool steels and alloys. Moscow: Metallurgiya, 1980. 88 p.

Language of full-text russian
Full content Buy
Back