Journals →  Gornyi Zhurnal →  2020 →  #5 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Improvement of apatite recovery from the Khibiny apatite–nepheline ore in flotation
DOI 10.17580/gzh.2020.05.06
ArticleAuthor Mukhina T. N., Marchevskaya V. V., Kalugin A. I.
ArticleAuthorData

Mining Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia:

T. N. Mukhina, Divisional Manager, Candidate of Engineering Sciences
V. V. Marchevskaya, Leading Researcher, Candidate of Engineering Sciences, vvm@goi.kolasc.net.ru

 

APATIT’s Kirovsk Office, Kirovsk, Russia:
A. I. Kalugin, Deputy Technical Officer – Chief Dresser, Candidate of Engineering Sciences

Abstract

A large majority of apatite reserves occur in the center of the Kola Peninsula, in the world’s largest Khibiny alkaline massif. Representative ore of the deposits features the comparatively high floatability with high recovery of apatite. The special category apatite–nepheline ore in destruction zones contains finely dispersed secondary minerals. Selectivity of apatite flotation from such ore is violated, and all process parameters decrease. This article presents the studies into optimization of flotation conditions for the apatite–nepheline ore extracted from destruction zones, with high content of finely dispersed components. Kinetics of apatite ore flotation is tested in the conventional reagent regime (basic) of APATIT’s processing plants and in a new regime with a mixture of anionic and nonionic collectors. Duration of flotation at the highest efficiency is determined. The proposed reagent regime with the mixture of anionic and nonionic collectors is highly selective relative to apatite, including finely dispersed particles. Selectivity of the composite collector is explained by the synergetic effect of its components at the phase interface. The use of the composite collector allows producing apatite concentrate of good quality and at high apatite recovery.

keywords Apatite-nepheline ore, ore from destruction zones, flotation kinetics, flotation selectivity, Hancock–Luiken criterion, flotation concentration parameters
References

1. Nepryakhin A. E., Belyaev E. V., Karpova M. I., Luzhbina I. V. Phosphate Material Resource Base of Russia in the Light of New Technological Possibilities. Georesources. 2015. No. 4-1(63). pp. 67–74.
2. Melnikov N. N. Role of the Arctic Region in the innovation-driven economic development of Russia. Gornyi Zhurnal. 2015. No. 7. pp. 23–27. DOI: 10.17580/gzh.2015.07.04
3. Golovanov G. A., Shifrin S. M., Myrzakhmetov M. M., Kaytmazov V. A. Zero-discharge technology for flotation of phosphate raw materials. Moscow : Khimiya, 1984. 134 p.
4. Levin B. V., Kalugin A. I. Efficiency of dressing and acid treatment of oversize apatite concentrate produced by Apatit JSC. Gornyi Zhurnal. 2014. No. 10. pp. 57–62.
5. Barmin I. S., Tugolukov A. V., Beloborodov V. I., Polivanskaya V. V. Increase of efficiency of concentration stockpiled fine-grained tails of GOK Kovdor. GIAB. 2015. No. 10. pp. 59–67.

6. Lygach A. V., Ignatkina V. A. Flotation properties of base minerals in Egorievsk nodular phosphorite. GIAB. 2018. No. 8. pp. 163–175.
7. Samikhov Sh. R., Zinchenko Z. A., Kurbonov Sh. A., Safarov S. Sh., Ismoilova M. S., Gorenkova L. G. Study of enrichment of phosphate ore of Rivat. Doklady Akademii nauk Respubliki Tadzhikistan. 2018. Vol. 61, No. 2. pp. 190–193.
8. Column flotation technology improves mineral production. Eriez Flotation Division, 2020. Available at: https://www.eriezflotation.com/flotation/ (accessed: 15.04.2020).
9. Matiolo E., Gonzaga L., Guedes A. L. An Alternative Flotation Process for Apatite Concentration of the Itataia Carbonaceous Uranium-Phosphate Ore. Beneficiation of Phosphates: Proceedings of VII Engineering Conferences International. – Melbourne, 2015.
10. Xinhai Phosphorite Ore Dressing Process. Shandong Xinhai Mining Technology & Equipment Inc., 2017. Available at: https://www.xinhaimining.com/newo/660.html (accessed: 10.01.2020).
11. Fang Zhou, Louxiang Wang, Zhenghe Xu, Qingxia Liu, Ruan Chi. Reactive oily bubble technology for flotation of apatite, dolomite and quartz. International Journal of Mineral Processing. 2015. Vol. 134. pp. 74–81.
12. Kalugin A. I., Gumenichenko K. M., Barabash A. Yu., Arsentiev S. S. Experience of fine screening introduction in apatite-nepheline ore milling circuit. Gornyi Zhurnal. 2014. No. 10. pp. 52–57.
13. Konopleva N. G., Ivanyuk G. Yu., Pakhomovskiy Ya. A., Yakovenchuk V. N., Mikhaylova Yu. A. Typomorphism of fluorapatite in the Khibiny alkaline pluton, Kola Peninsula. Geology of Ore Deposits. 2014. Vol. 56. Iss. 7. pp. 576–588.
14. Kamenev E. A., Mineev D. A. (Eds.). New Khibiny apatite deposits. Moscow : Nedra, 1982. 182 p.
15. Hanumantha Rao K., Dwari R. K., Lu S., Vilinska A., Somasundaran P. Mixed anionic/non-ionic collectors in phosphate gangue flotation from magnetite fines. The Open Mineral Processing Journal. 2011. Vol. 4. pp. 14–24.

Language of full-text russian
Full content Buy
Back