Journals →  Gornyi Zhurnal →  2021 →  #2 →  Back

KOMSOMOLSKY MINE, NORNICKEL’S POLAR DIVISION
ArticleName Efficiency of seismic events cumulative effect parameter in prediction of geodynamic phenomena in rockburst-hazardous deposits in the Norilsk province
DOI 10.17580/gzh.2021.02.01
ArticleAuthor Marysyuk V. P., Shilenko S. Yu., German V. I., Mulev S. N.
ArticleAuthorData

NorNickel’s Polar Division, Norilsk, Russia:

V. P. Marysyuk, Chief Geotechnical Engineer—Director of Geodynamic Safety Center, Candidate of Engineering Sciences, marysyukvp@nornik.ru
S. Yu. Shilenko, Director of Production and Occupational Safety Department

 

Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia:

V. I. German, Chief Seismologist, Associate Professor, Candidate of Engineering Sciences

 

VNIMI, Saint-Petersburg, Russia:

S. N. Mulev, Director of Science

Abstract

The microseismicity method of ground control enjoys increasingly wider application. It is critical to have an efficiency evaluation procedure for prediction parameters, which can assist in solution of such applied problems as: reasoned selection of threshold values for prediction parameters, necessary adjustment of input data, comparison of efficiency of different parameters and adoption of the most suitable parameters for specific areas with regard to their features. This article presents the related sequential and formalized analysis as a case-study of ore body S-2 in Skalisty Mine. The seismic events cumulative effect parameter S has exhibited sufficient efficiency in the case-study of data from high-active zone A in ore body S-2 in Skalisty Mine. The critical level assumed in the procedure enables efficient prediction of a third of strong seismic events with energy emission of 4500 J and above. Prediction of higher percentage of such events needs lower value of the critical level to be set. The developed approach to the formalized evaluation of efficiency of prediction parameters is recommended for the actual introduction in seismic monitoring of rockburst-hazardous deposits.
The authors appreciate participations of experts L. V. Kokoshina, E. V. Rodionova, M. V. Tereshchenko.

keywords Norilsk mines, prediction efficiency, rockburst hazard, seismic monitoring, seismicity net effect parameter, failure
References

1. Trofimov A. V., Kirkin A. P., Rumyantsev A. E., Yavarov A. V. Use of numerical modelling to determine optimum overcoring parameters in rock stress-strain state analysis. Tsvetnye Metally. 2020. No. 12. pp. 22–27. DOI: 10.17580/tsm.2020.12.03
2. Tyupin V. N. Geomechanical behavior of jointed rock mass in the large-scale blast impact zone. Eurasian Mining. 2020. No. 2. pp. 11–14. DOI: 10.17580/em.2020.02.03
3. Kulkova M. S., Zemtsovsky A. V. Optimizing parameters of stopes and pillars for the Zhdanov deposit mi ning. Eurasian Mining. 2019. No. 1. pp. 13–15. DOI: 10.17580/em.2019.01.03
4. Scholz C. H. The Mechanics of Earthquakes and Faulting. 3rd ed. Cambridge : Cambridge University Press, 2018. 519 p.
5. Silva J., Worsey T., Lusk B. Practical assessment of rock damage due to blasting. International Journal of Mining Science and Technology. 2019. Vol. 29, Iss. 3. pp. 379–385.
6. Contreras L.-F., Brown E. T. Slope reliability and back analysis of failure with geotechnical parameters estimated using Bayesian inference. Journal of Rock Mechanics and Geotechnical Engineering. 2019. Vol. 11, Iss. 3. pp. 628–643.
7. Xia-Ting Feng. Rockburst: Mechanisms, Monitoring, Warning, and Mitigation. Cambridge : Butterworth-Heinemann, 2017. 570 p.
8. Microseismicity monitoring procedure using seismic control system RELOS RSH-64 for ore body S-2 in Skalisty Mine. Saint-Petersburg, 2018. 49 p.
9. Kosobokov V. G. Earthquake predictions and geodynamic processes. Earthquake prediction : Fundamentals, implementation, prospects. Moscow : GEOS, 2005. Iss. 36. Computational seismology. Part I. 179 p.
10. Nagovitsin Yu. N., Kakoshina L. V., Rodionova E. V., Mulev S. N. Continuous seismic monitoring at rockburst-hazardous deposits in the Norilsk area. Gornyi Zhurnal. 2015. No. 6. pp. 36–40. DOI: 10.17580/gzh.2015.06.07
11. German V. I. Rock failure prediction in mines by seismic monitoring data. Journal of Mining Science. 2014. Vol. 50, Iss. 2. pp. 288–297.
12. Kuksenko V. S., Inzhevatkin I. E., Manzhikov B. Ts., Stanchits S. A., Tomilin N. G., Frolov D. I. Physical and methodological principles of rock burst prediction. Soviet Mining. 1987. Vol. 23, Iss. 1. pp. 6–17.
13. Malovichko A. A., Zavyalov A. D., Kozyrev A. A. Rock bursts. Natural hazards in Russia : Collected papers. Moscow : Kruk, 2000. Т. 2. Seismic hazards. pp. 243–293.
14. Parton V. Z. Fracture mechanics : From theory to practice. Moscow : Nauka, 1990. 240 p.
15. Damaskinskaya E. E., Kuksenko V. S., Tomilin N. G. A two-stage model of rock failure. Physics of the Solid Earth. 1995. Vol. 30, No. 10. pp. 898–902.
16. Makarov V. V., Kuksenko V. S., Rasskazov I. Yu., Damaskinskaya E. E. Prediction of geodynamic phenomena in rocks and rock masses subjected to high compression. Vladivostok : DVFU, 2013. 130 p.
17. Galaov R. B., Kisel A. A., Andreev A. A., Zubkov V. V. Pre-stoping assessment of stress state of ore body S-2 in Skalistaya Mine. Gornyi Zhurnal. 2016. No. 7. pp. 10–14. DOI: 10.17580/gzh.2016.07.02
18. Mansurov V. A. Prediction of rockbursts by analysis of induced seismicity data. International Journal of Rock Mechanics and Mining Sciences. 2001. Vol. 38, No. 6. pp. 893–901.
19. Kagan Y. Y., Jackson D. D. Probabilistic forecasting of earthquakes. Geophysical Journal International. 2000. Vol. 143, Iss. 2. pp. 438–453.

Language of full-text russian
Full content Buy
Back