Журналы →  Gornyi Zhurnal →  2021 →  №5 →  Назад

AUTOMATION
Название GEOPOLIS software tools – Groundwater flow modeling at deep repository of liquid radioactive waste at Severny test site
DOI 10.17580/gzh.2021.05.12
Автор Suskin V. V., Kapyrin I. V., Rastorguev A. V.
Информация об авторе

Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia:

V. V. Suskin, Junior Researcher, viksus@ibrae.ac.ru
A. V. Rastorguev, Senior Researcher, Candidate of Engineering Sciences


Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia1 ; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia2:

I. V. Kapyrin1,2, Head of laboratory, Candidate of Physical and Mathematical Sciences

Реферат

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.

Ключевые слова Severny test site, GEOPOLIS, deep injection, liquid radioactive waste, groundwater flow modeling, verification
Библиографический список

1. Ferguson G. Deep Injection of Waste Water in the Western Canada Sedimentary Basin. Groundwater. 2015. Vol. 53, No. 2. pp. 187–194.
2. Rybalchenko A. I., Pimenov M. K., Kostin P. P. et al. Deep repository of liquid radioactive waste. Moscow : IzdAT, 1994. 256 p.
3. Code NP-030-19. Basic code for inventory and control of nuclear materials. Yadernaya i radiatsionnaya bezopasnost. 2020. No. 3(97). pp. 32–58.
4. Safety Guide RB-162-20. Guidelines on physical protection of nuclear plants and repositories during design and construction. Yadernaya i radiatsionnaya bezopasnost. 2020. No. 4(98). pp. 86–100.
5. Penzin R. A., Svittsov A. A. Development of technologies for handling liquid radioactive waste of Nuclear Power Plants. Radioaktivnye otkhody. 2020. No. 4(13). pp. 90–98.
6. Malkovsky V. I., Pek A. A., Velichkin V. I., Parker F. L. Prediction of contamin ant plume movement from the deep-well injection of liquid radioactive waste (LRW) at the Krasnoyarsk disposal site. Hydrological Science and Technology. 1999. Vol. 15, No. 1-4. pp. 145–171.
7. Malkovskiy V. I., Pek A. A. Influence of natural convection on stabilization of contaminant plume in natural traps at underground disposal of liquid waste. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2012. No. 3. pp. 237–244.
8. Compton K. L., Novikov V., Parker F. L. Deep Well I njection of Liquid Radioactive Waste at Krasnoyarsk-26. RR-00-1. Laxenburg : International Institute for Applied Systems Analysis, 2000. Vol. I. 113 p.
9. Compton K. L., Novikov V., Parker F. L. Deep Well Injection of Liquid Radioactive Waste at Krasnoyarsk-26. RR-01-01. Laxenburg : International Institute for Applied Systems Analysis, 2001. Vol. II. 74 p.
10. Waters R. D., Compton K. L., Novikov V., Parker F. L. Releases of Radionuclides to Surface Waters at Krasnoyarsk-26 and Tomsk-7. RR-99-3. Laxenburg : International Institute for Applied Systems Analysis, 1999. 118 p.
11. Zuev V. A., Bukaty M. B., Khafizov R. R. Hydrogeological conditions of underground disposal of radioactive waste at Severny test site (Krasnoyarsk Krai). Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2008. No. 6. pp. 531–546.
12. Bukaty M. B. Numerical methods of modeling geo-migration of radionuclides : Educational aid. Tomsk : Izdatelstvo TPU, 2008. 89 p.
13. Hughes J. D., Langevin C. D., Banta E. R. Documentation for the MODFLOW 6 Framework. Chapter 57 of Section A, Groundwater. Book 6, Modeling Techniques. Techniques and Methods 6–A57. Reston : Reston Publishing Service Center, 2017. 42 p.
14. Kapyrin I. V., Utkin S. S., Vasilevskiy Yu. V. Concept of design and use of GeRa software tools for validation of a repository safety. Voprosy atomnoy nauki i tekhniki. Series: Matematicheskoe modelirovanie fizicheskikh protsessov. 2014. No. 4. pp. 44–54.
15. Kapyrin I. V., Ivanov V. A., Kopytov G. V., Utkin S. S. Integral code GeRa for radioactive waste disposal safety validation. Gornyi Zhurnal. 2015. No. 10. pp. 44–50. DOI: 10.17580/gzh.2015.10.08
16. Laverov N. P., Velichkin V. I., Omelyanenko B. I., Yudintsev S. V., Petrov V. A., Bychkov A. V. The environment and climate changes : The natural and associated induced disasters. Vol. 5. Isolation of spent nuclear materials : Geological and geochemical framework. Moscow : IGEM RAN, 2008. 254 p.
17. Grinevskii S. O. The effect of topography on the formation of groundwater recharge. Moscow University Geology Bulletin. 2014. Vol. 69, No. 1. pp. 47–52.
18. Demyanov V. V., Saveleva E. A. Geostatistics. Theory and practice. Moscow : Nauka, 2010. 327 p.
19. Savelieva E. A., Suskin V. V., Rastorguev A. V., Ponizov A. V. Modeling lithologic heterogeneity in bed of sedimentation at deep repository for liquid radioactive waste. Gornyi Zhurnal. 2015. No. 10. pp. 21–26. DOI: 10.17580/gzh.2015.10.04
20. Keith J. 18 . Beven K. J. On hypothesis testing in hydrology: Why falsification of models is still a really good idea. WIREs Water. 2018. Vol. 5, Iss. 3. DOI: 10.1002/wat2.1278
21. Anuprienko D. V., Kapyrin I. V. Modeling Groundwater Flow in Unconfined Conditions: Numerical Model and Solvers’ Efficiency. Lobachevskii Journal of Mathematics. 2018. Vol. 39, No. 7. pp. 867–873.
22. Enemark T., Peeters L. J. M., Mallants D., Batelaan O. Hydrogeological conceptual model building and testing: A review. Journal of Hydrology. 2019 . Vol. 569. pp. 310–329.
23. Middlemis H. Groundwater flow modelling guideline. South Perth : Aquaterra Consulting Pty Ltd., 2000. 133 p.
24. Dorofeev A. N., Saveleva E. A., Utkin S. S., Ponizov A. V., Sharafutdinov R. B. et al. Evolution in the safety case for liquid radioactive waste geological repositories. Radioaktivnye otkhody. 2017. No. 1(1). pp. 55–64.

Language of full-text русский
Полный текст статьи Получить
Назад