ArticleName |
GEOPOLIS software tools – Groundwater flow modeling at deep repository of liquid radioactive waste at Severny test site |
ArticleAuthorData |
Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia:
V. V. Suskin, Junior Researcher, viksus@ibrae.ac.ru A. V. Rastorguev, Senior Researcher, Candidate of Engineering Sciences
Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russia1 ; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia2:
I. V. Kapyrin1,2, Head of laboratory, Candidate of Physical and Mathematical Sciences |
References |
1. Ferguson G. Deep Injection of Waste Water in the Western Canada Sedimentary Basin. Groundwater. 2015. Vol. 53, No. 2. pp. 187–194. 2. Rybalchenko A. I., Pimenov M. K., Kostin P. P. et al. Deep repository of liquid radioactive waste. Moscow : IzdAT, 1994. 256 p. 3. Code NP-030-19. Basic code for inventory and control of nuclear materials. Yadernaya i radiatsionnaya bezopasnost. 2020. No. 3(97). pp. 32–58. 4. Safety Guide RB-162-20. Guidelines on physical protection of nuclear plants and repositories during design and construction. Yadernaya i radiatsionnaya bezopasnost. 2020. No. 4(98). pp. 86–100. 5. Penzin R. A., Svittsov A. A. Development of technologies for handling liquid radioactive waste of Nuclear Power Plants. Radioaktivnye otkhody. 2020. No. 4(13). pp. 90–98. 6. Malkovsky V. I., Pek A. A., Velichkin V. I., Parker F. L. Prediction of contamin ant plume movement from the deep-well injection of liquid radioactive waste (LRW) at the Krasnoyarsk disposal site. Hydrological Science and Technology. 1999. Vol. 15, No. 1-4. pp. 145–171. 7. Malkovskiy V. I., Pek A. A. Influence of natural convection on stabilization of contaminant plume in natural traps at underground disposal of liquid waste. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2012. No. 3. pp. 237–244. 8. Compton K. L., Novikov V., Parker F. L. Deep Well I njection of Liquid Radioactive Waste at Krasnoyarsk-26. RR-00-1. Laxenburg : International Institute for Applied Systems Analysis, 2000. Vol. I. 113 p. 9. Compton K. L., Novikov V., Parker F. L. Deep Well Injection of Liquid Radioactive Waste at Krasnoyarsk-26. RR-01-01. Laxenburg : International Institute for Applied Systems Analysis, 2001. Vol. II. 74 p. 10. Waters R. D., Compton K. L., Novikov V., Parker F. L. Releases of Radionuclides to Surface Waters at Krasnoyarsk-26 and Tomsk-7. RR-99-3. Laxenburg : International Institute for Applied Systems Analysis, 1999. 118 p. 11. Zuev V. A., Bukaty M. B., Khafizov R. R. Hydrogeological conditions of underground disposal of radioactive waste at Severny test site (Krasnoyarsk Krai). Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2008. No. 6. pp. 531–546. 12. Bukaty M. B. Numerical methods of modeling geo-migration of radionuclides : Educational aid. Tomsk : Izdatelstvo TPU, 2008. 89 p. 13. Hughes J. D., Langevin C. D., Banta E. R. Documentation for the MODFLOW 6 Framework. Chapter 57 of Section A, Groundwater. Book 6, Modeling Techniques. Techniques and Methods 6–A57. Reston : Reston Publishing Service Center, 2017. 42 p. 14. Kapyrin I. V., Utkin S. S., Vasilevskiy Yu. V. Concept of design and use of GeRa software tools for validation of a repository safety. Voprosy atomnoy nauki i tekhniki. Series: Matematicheskoe modelirovanie fizicheskikh protsessov. 2014. No. 4. pp. 44–54. 15. Kapyrin I. V., Ivanov V. A., Kopytov G. V., Utkin S. S. Integral code GeRa for radioactive waste disposal safety validation. Gornyi Zhurnal. 2015. No. 10. pp. 44–50. DOI: 10.17580/gzh.2015.10.08 16. Laverov N. P., Velichkin V. I., Omelyanenko B. I., Yudintsev S. V., Petrov V. A., Bychkov A. V. The environment and climate changes : The natural and associated induced disasters. Vol. 5. Isolation of spent nuclear materials : Geological and geochemical framework. Moscow : IGEM RAN, 2008. 254 p. 17. Grinevskii S. O. The effect of topography on the formation of groundwater recharge. Moscow University Geology Bulletin. 2014. Vol. 69, No. 1. pp. 47–52. 18. Demyanov V. V., Saveleva E. A. Geostatistics. Theory and practice. Moscow : Nauka, 2010. 327 p. 19. Savelieva E. A., Suskin V. V., Rastorguev A. V., Ponizov A. V. Modeling lithologic heterogeneity in bed of sedimentation at deep repository for liquid radioactive waste. Gornyi Zhurnal. 2015. No. 10. pp. 21–26. DOI: 10.17580/gzh.2015.10.04 20. Keith J. 18 . Beven K. J. On hypothesis testing in hydrology: Why falsification of models is still a really good idea. WIREs Water. 2018. Vol. 5, Iss. 3. DOI: 10.1002/wat2.1278 21. Anuprienko D. V., Kapyrin I. V. Modeling Groundwater Flow in Unconfined Conditions: Numerical Model and Solvers’ Efficiency. Lobachevskii Journal of Mathematics. 2018. Vol. 39, No. 7. pp. 867–873. 22. Enemark T., Peeters L. J. M., Mallants D., Batelaan O. Hydrogeological conceptual model building and testing: A review. Journal of Hydrology. 2019 . Vol. 569. pp. 310–329. 23. Middlemis H. Groundwater flow modelling guideline. South Perth : Aquaterra Consulting Pty Ltd., 2000. 133 p. 24. Dorofeev A. N., Saveleva E. A., Utkin S. S., Ponizov A. V., Sharafutdinov R. B. et al. Evolution in the safety case for liquid radioactive waste geological repositories. Radioaktivnye otkhody. 2017. No. 1(1). pp. 55–64. |